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This paper presents a new artificial neural network approach based on

loss separation model to compute power loss on different types of electrical

steels. The network was trained by a Levenberg–Marquardt algorithm. The

results obtained by using the proposed model were compared with a com-

monly used conventional model. The comparison has shown that the neural

network model is in good agreement with experimental data with respect to

the conventional model.

PACS numbers: 75.50.Bb, 84.35.+i

1. Introduction

Thousands of tons electrical steels are used annually in wound cores for ulti-
mate use in electromagnetic devices. A rapid and accurate prediction of power loss
in electrical steels is becoming more important in their design and specifications
for many reasons [1]. An artificial neural network (ANN) approach was very popu-
lar in the last years to contribute learning and generalization ability, fast real-time
operation, and ease of implementation [2]. Recently the dynamic hysteresis loop,
the power loss and permeability have been estimated by the ANN using the trained
experimental data. The conventional methods are widely used for loss prediction
but acceptable results are not guaranteed. However, the computational methods
may provide good solutions to problems, which cannot be solved by a conventional
method.

Specific power losses in soft magnetic materials can be divided into three
components; static hysteresis, classical eddy current and anomalous losses [3].
The total specific power losses P can be expressed by

P = Ph + Pe + Pa, (1)
where Ph, Pe, and Pa are hysteresis, eddy current, and anomalous losses, respec-
tively.

(147)
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Hysteresis loss Ph (W/kg) and the anomalous loss Pa (W/kg) per cycle un-
der sinusoidal excitation can be expressed by [3]:

Ph/f = C0B
x
m, (2)

Pa/f = C1B
3/2
m f1/2, (3)

where C0 and C1 are the unknown coefficients of the hysteresis loss and anomalous
losses, respectively and Bm (T), f (Hz) and x are the peak flux density, magne-
tizing frequency, and the Steinmetz parameter, respectively. The eddy-current
losses Pe (W/kg) per cycle under sinusoidal excitation can be calculated by the
well-known formula

Pe

f
=

π2t2B2
mf

6ρd
, (4)

where t (m), ρ (Ω m), and d (kg/m3) are the thickness of the electrical steel strip,
the resistivity, and density of the material, respectively.

In this work, the power losses are modelled by determination of unknown
coefficients in Eqs. (1)–(4) using an ANN and a set of experimental data [4]. The
proposed model is not time consuming and more accurately and easily estimated.

2. Neural network

A neural network is an interconnected assembly of simple processing ele-
ments, units or nodes, whose functionality is loosely based on the human neu-
ron. The processing ability of the network is stored in the inter-unit connection
strengths or weights, obtained by a process of adaptation to, or learning from, a set
of training patterns. Implicit knowledge is built into a neural network by training
it. Some neural networks can be trained by being presented with typical input
patterns and the corresponding expected output patterns. The error between the
actual and expected outputs is used to modify the strengths, or weights, of the
connections between the neurons. The Levenberg–Marquardt algorithm is used
in this study. The Levenberg–Marquardt algorithm is a least-squares estimation
algorithm based on the maximum neighborhood idea. Let E(w) be an objective
error function made up of m individual error terms e2

i (w) as follows:

E(w) =
m∑

i=1

e2
i (w) =‖ g(w) ‖2, (5)

where e2
i (w) = (ydi− yi)2, ydi is the desired value of output neuron i, yi is the ac-

tual output of that neuron and g(w) is a function containing the individual weight
vector w such that E(w) is minimum. Using the Levenberg–Marquardt algorithm,
a new weight vector wk+1 can be obtained from the previous weight vector wk as
follows:

wk+1 = wk + δwk, (6)
where δwk is defined as
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δwk = − (
JT

k g(wk)
) (

JT
k Jk + λI

)−1
. (7)

In Eq. (7), Jk is the Jacobian of g(wk) evaluated by taking derivative of g(wk)
with respect to wk, λ is the Marquardt parameter, I is the identity matrix [5].

3. ANN applications to power losses of electrical steels

The proposed technique involves training a neural network to calculate the
unknown hysteresis and anomalous coefficients C0 and C1 of the electrical steels
when the values of ρ, t, f , B, and P are given. Training an ANN using the
Levenberg–Marquardt algorithm to compute C0 and C1 involves presenting them
with different sets (ρ, t, f , B, and P ) sequentially and/or randomly and corre-
sponding calculated values C0 and C1. Differences between the target outputs (C0

and C1) and the actual outputs (C0ANN and C1ANN) of the ANN are calculated
through the network to adapt its weights using Eq. (5)–(7). The adaptation is
carried out after the presentation of each set (ρ, t, f , B, and P ) until the calcu-
lation accuracy of the network is deemed satisfactory according to some criterion
(for example, when the errors between C0 and C0ANN and C1 and C1ANN for all
the training set fall below a given threshold) or the maximum allowable number
of epochs is reached. In order to understand the networks prediction accuracy
and generalization capacity the networks were trained with the training set, cross
validation set and checked with test data. Cross validation is a highly recom-
mended criterion for stopping the training of a network. When the error in the
cross validation increases the training should be stopped. The networks trained by
the Levenberg–Marquardt algorithm was made in 500 epochs since the increase in
cross validation error becomes stable at 500 epochs. For the validation, untrained
previous experimental data are also used to test the neural model as well. The
average correlation and prediction error were found to be 99% and 1% for the
tested electrical steels, respectively.

4. Results and discussion

Two different electrical steels, which are commercially named Unisil (27M3)
and Unisil (30M5), were used for the experimental validation of the proposed
model. The estimates of P were found to be in a range from 0.0003 J/kg to
0.0014 J/kg by use of estimated loss results in the electrical steels at 1 kHz. Fig-
sures 1a and b show variations of predicted and measured specific losses with mag-
netic induction in the Unisil (27M3) and Unisil (30M5) electrical steels. Figures 1a
and b show variations of predicted and measured specific losses with magnetic in-
duction in the Unisil (27M3) and Unisil (30M5) electrical steels. In these strips
specific total losses predicted by ANN are in good agreement with experimental
results.

According to these results loss predictions by the ANN generate a better
agreement with experimental data than the use of classical curve-fitting method,
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Fig. 1. Variation of estimated and measured losses in the (a) Unisil (27M3) and

(b) Unisil (30M5).

particularly for high magnetic induction. Hence ANN should be used for loss
predictions rather than the widely used curve-fitting method.

5. Conclusions

The predicted results from the ANN sound very satisfactory and in agree-
ment with experimental results concerning the Unisil electrical steels. The model
is fast and allows the application of standard learning algorithms for the neural
network. Finally, this model capable of more accurately predicting power loss is
also very useful to manufacturer working in this field. a
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