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An analytically tractable simple model of a magnetic domain wall in

a ferromagnetic metal is considered and, assuming the ballistic regime of

electronic transport, transmission and reflection coefficients of such a wall

are calculated within the stationary scattering theory. It is rederived that for

realistic values of electron energies and domain wall widths the transmission

coefficient is very close to one and thus an ideal domain wall itself (i.e.

not taking into account other aspects such as disorder) does not essentially

represent a hindrance to the transport.
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1. Introduction

Electronic transport through magnetic multilayers, including the transport
through a domain Bloch wall in a ferromagnetic metal, has recently attracted
attention of both experimentalists and theorists [1, 2]. While some experiments
show a positive contribution of the wall to the material resistivity (nota bene giant
magnetoresistance), others indicate a negative one [3, 4]. As has become clearer,
quite a few distinct phenomena influence the resulting domain wall contribution.
It is therefore essential to gain a truthful picture of the relative strengths of these
contributions. This article aims to elucidate the effect of the changing magne-
tization in the wall on the electronic transport, leaving all other possible factors
unattended. We designed a model domain wall the properties of which are to some
extent analytically accessible. The results obtained are not completely new [5, 6],
but are nontheless demonstrated on the simplest possible basis. This simplicity
constitutes the main contribution of the presented work.

2. Model domain wall

In our proposed one-dimensional model of a domain wall two identical
jellium-like ferromagnets with opposite magnetization directions are connected

(15)
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by a wall of finite width. We consider only the simplest case of a 180◦ domain
wall. The magnetization inside the wall (an intermediate region, I) is supposed
to rotate uniformly between the left (L) and right (R) boundary values, see Fig.
1. Although this is not fully realistic, it may still be taken as an approximation
that makes the model analytically manageable. (For a more precise description of
a wall anatomy see e.g. [7].) The Hamiltonian describing the electronic movement
then reads (in x-representation)

H = p2 + γσ ·M(x), p = −i∂x, M(x) =





(1, 0, 0), x ∈ L,

(cos qx, sin qx, 0), x ∈ I,

(−1, 0, 0), x ∈ R,

(1)

where the first term represents the kinetic energy (we set ~ = 2m = 1), γ char-
acterizes the strength of the exchange splitting due to the magnetization M , q

determines the rate at which the magnetization rotates in the wall, x is the dis-
tance along the wall (x = 0 at the L/I interface and x = π/q at the I/R interface)
and σ = (σx, σy, σz) are the Pauli matrices. The value of γ is considered neg-
ative, so that the electron energy is lowest when its spin is parallel to the local
magnetization.

Fig. 1. Schematic structure of a domain wall.

Assuming the system is in the ballistic regime we calculate the reflection and
transmission coefficients of an electron propagating through the wall. Thanks to
the simplicity of our model, the eigenfunctions of the Hamiltonian can be explicitly
found. The solutions in the homogeneous ferromagnets L and R are

ψL = 1 · 1√
2
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1
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2
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2
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2

(
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)
eikx, (3)

where the values of k, k̄ are determined from the energy relation E = k2 − |γ| =
k̄2 + |γ|, and r1, r2, t1, t2 are coefficients to be found, determining the individual
transmission and reflection coefficients R1 = |r1|2, R2 = |r2|2k̄/k, T1 = |t1|2k̄/k,
T2 = |t2|2 for real k̄, otherwise R2 = T1 = 0.

In the form of the solutions (2), (3) we have incorporated our decision to
deal only with fully spin-polarized incoming electrons (the first term of ψL with
coefficient 1 with polarization along M) and included only outgoing waves in ψR

(k is always meant positive and real, E > −|γ|, so that there is a propagating
incoming wave in L, while k̄, if real, is also taken positive, and if purely imaginary,
the solution with positive imaginary part is chosen).
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Solutions in the region I of rotating magnetization can be found with the
help of the operator O = p + qσz/2, which commutes with the Hamiltonian, as
can be shown by direct calculation. The eigenfunctions of H can then be taken as
simultaneous eigenfunctions of O, which are found to be

(
p +

q

2
σz

)
ψI = χψI ⇒ ψI(x) =

(
c1 exp

(
i
(
χ− q

2

)
x
)

c2 exp
(
i
(
χ + q

2

)
x
)
)

. (4)

Solving the energy eigenvalue problem HψI = EψI then yields two solutions for
any χ2 (labeled by ±)

E±(χ2) = χ2 +
q2

4
± w,

(
c1±
c2±

)
=

1√
2w(w ± χq)

(
γ

χq ± w

)
, (5)

where w =
√

χ2q2 + γ2. Thus for any chosen energy E we have four generally
complex χ values leading to four solutions in the I region. Generally, ψI is a
linear combination of these four solutions, ψI =

∑4
i=1 miψ

i
I with some unknown

coefficients m1,2,3,4.
Altogether, for given E, γ and q — which completely characterize our prob-

lem — we have eight unknown coefficients r1,2, t1,2 and m1,2,3,4. On the other
hand, continuity of ψ and its first derivative at the interfaces imposes eight match-
ing conditions. We can then solve the set of equations and calculate the desired
reflection and transmission coefficients.

Fig. 2. Transmission coefficients for fixed energy E = 5 as a function of q (γ = −1).

Fig. 3. Transmission and reflection coefficients for fixed q = 0.7 as a function of energy

(γ = −1).

3. Results and discussion

The situation in common ferromagnets may be described [7] by the Fermi
energy of about 5 eV, exchange splitting of about 1 eV, Fermi wave vector of
about 1010 m−1 ≈ 2π/a, a being the material lattice constant, and the wall width
of about one hundred lattice constants. In the words of our parameters these
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values translate to E = 5, γ = −1, kF = 2 and q = kF/100 = 0.02. Using
these values gives R1,2 ≈ T1 ≈ 0, T2 ≈ 1, which confirms that the electron spin
follows the change in local magnetization as it propagates through the material.
This situation is practically unchanged as long as the wall width is much larger
compared to the electron wavelength, i.e. q ¿ k, k ≈ kF. Figure 2 depicts
this kind of behavior. Further, we see that from a certain value of q the wall
width is too thin (its width equals π/q) for the electrons to adjust their spins and
they more and more pass through the wall maintaining their original polarization.
Figure 3 shows the dependence of the reflection and transmission coefficients for
such higher (unrealistic) value of q = 0.7 (that corresponds to a wall about four
lattice constants thick) on the energy of an incoming electron.
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