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Kinetics of processes, in which the reaction rate increases with conver-

sion, is discussed and illustrated with an example of the chemical reaction of

isomerization of an azobenzene derivative in a liquid crystalline matrix. A

simple phenomenological model is put forward explaining the effect by dy-

namic changes of interactions between the reacting species and the matrix.

PACS numbers: 82.20.Pm, 82.30.Qt

1. Introduction

Kinetics of many chemical and physical processes is well described by the
first-order equations, according to which the conversion rate is proportional to the
number (concentration) of unreacted species

dx

dt
= k(1− x), (1)

where k is the rate constant, and x is the conversion ratio, i.e., the ratio of the
number (concentration) of reacted species to the initial number (concentration) of
reactant molecules. In thermally activated processes, k is temperature dependent,
following the Arrhenius equation

k = ν exp
(
− E

kBT

)
, (2)

with kB standing for the Boltzmann constant, ν — for the frequency factor, and
E being the activation energy. The latter two parameters (and hence the rate
constant) are usually assumed conversion-independent. Under this assumption,
the solution of Eq. (1) reads

(S-153)
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1− x = exp(−kt). (3)
Thus the plot of ln(1−x) vs. t should yield a straight line, its slope amounting to
−k (cf. Fig. 1). This is a common “textbook approach” to the first-order kinetics
(cf., e.g. [1, 2]). Quite often, however, processes expected to follow the first-order
kinetics, do not obey Eq. (3): in most cases, the rate of the process decreases as
the conversion increases. The decays in this case can often be described by the
phenomenological “stretched exponential” (Kohlrausch–Williams–Watts, KWW)
equation [3, 4]

1− x = exp (−(κt)α) , (4)
with κ standing for the effective rate constant and α being a time-independent
parameter (0 < α < 1). Several explanations have been put forward to explain
the latter behaviour (see, e.g. [5–10] and references therein). In the case of pro-
cesses taking place in constrained media (solutions of reacting species in viscous
liquids, matrices, etc.), a commonly accepted model assumes a distribution of rate
constants resulting from a distribution of microenvironments of reacting species:
a spread of intermolecular distances and orientations modifies the frequency fac-
tor and/or activation energy. It is important to point out that the distribution
has been assumed static, i.e., conversion-independent. In other words, an elemen-
tary reaction event taking place on a molecule is not supposed to affect other
unreacted molecules. One may demonstrate that such a static distribution always
yields decays that can be approximated by the stretched exponential with α < 1,
the parameter α depending on the distribution width.

Fig. 1. Calculated decay curves: an exponential decay (Eq. (3) or Eq. (4) with α = 1),

and a stretched exponential decay with α = 0.8.

There exist, however, processes whose kinetics is evidently of the first order
in “normal” environments but which exhibit an unconventional behaviour in, e.g.,
liquid crystalline matrices. Isomerization of azobenzene derivatives may serve as
a good example.
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2. Experimental example

The azobenzene family is one of the best known photochromic systems (cf.,
e.g. [11, 12] and references therein), and kinetic parameters of the isomeriza-
tion have been determined by several researchers (e.g. [13, 14]). The thermally
driven cis-trans reaction follows the first-order kinetics in common solvents [15, 16],
whereas one can observe a stretched exponential behaviour in diluted solutions in
polymer matrices [17–19]. We have found, however, that the kinetics of the same
reaction in liquid crystalline matrices is, in some cases, qualitatively different and
cannot be described by the equations mentioned above.

The experiment reported in this note is a thermally driven cis-trans isomer-
ization of 4-fluoro-4′-methoxyazobenzene (hereafter refered to as FMA) in liquid-
-crystalline 4-hexylo-4′-cyanobiphenyl (6CB) (cf. Fig. 2a). The reaction changes
the spectrum of the system (see Fig. 2b), hence one may monitor the progress of
the isomerization.

Fig. 2. (a) Chemical formulae of the system under study (FMA in 6CB), and a scheme

of the isomerization of FMA. (b) Absorption spectra of the system under study in the

visible spectral range. Curve 1: the solution immediately after UV irradiation (most of

FMA converted into the cis form); curve 2: the solution in thermal equilibrium (FMA

converted into the trans form). The sharp increase in absorbance below 350 nm is due

to the absorption of 6CB. The curves were normalized to the peak absorbance at t = ∞.

The temporal evolution of the absorbance of FMA, measured at 360 nm (i.e.,
near the maximum of the absorption of the trans form) is shown in Fig. 3a.

The curve shown in the figure can be simply converted into the temporal
change of the concentration of cis-FMA by making use of the Lambert–Beer law:
it is straightforward to show that the following relation holds:

1− x =
A(∞)−A(t)
A(∞)−A(0)

, (5)

where A(0), A(t), and A(∞) are initial, momentary, and final absorbances, respec-
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Fig. 3. (a) Temporal evolution of the absorbance of the solution of FMA in 6CB (T =

301 K, c = 10−5 mol dm−3). (b) Solid line: the data re-calculated using Eq. (5) and

plotted in semilogarithmic coordinates; dotted line: the data fitted with Eq. (4) with

α = 1.13.

tively. The resulting curve, shown in Fig. 3b, is clearly non-exponential but the
increasing slope of the curve shows that, contrary to the case of stretched expo-
nential, the rate of the reaction increases with progressing conversion; by analogy
to “stretched exponential”, such a behaviour may be referred to as “squeezed ex-
ponential”. The dependence shown in Fig. 3b can be fitted with Eq. (4), the fit
yielding α = 1.13 > 1.

3. The model

The behaviour exemplified with the curve shown in Fig. 3b cannot be ex-
plained within the model assuming static distributions of the parameters deter-
mining the rate constant. Thus one should seek another explanation, the most
obvious one being conversion-depending rate constant. In other words, one should
assume that the reaction changes microenvironment of unreacted molecules, hence
dynamically modifying the activation energy and/or frequency factor as the reac-
tion progresses.

In the following, we shall adopt a simple phenomenological model assuming
a linear dependence of E and lnν on conversion

E = E0 + εx, ln ν = ln ν0 + βx, (6)
where ε and β are conversion-independent parameters. We will neglect a possible
effect of distributions of the rate constants.

Equation (2) thus becomes

k = ν0 exp
(
− E0

kBT

)
exp(γx) = k0 exp(γx), (7)

where γ = β − ε/kBT .
Since k is now conversion-dependent, Eq. (1) can be, in general, solved only

numerically. We shall, however, limit ourselves to the case of |γ| < 1; Eq. (7) can
then be approximated by



Non-Exponential Decays in First-Order Kinetic Processes . . . S-157

k ≈ k0(1 + γx). (7a)
Equation (1) can now be rewritten in the form

dx

dt
= k0(1− x)(1 + γx). (1a)

The solution of Eq. (1a) reads

1− x =
(1 + γ) exp(−kefft)
1 + γ exp(−kefft)

, (8)

where keff = k0(1 + γ). Let us note that the above equation becomes identical
with Eq. (3) for γ = 0.

Plots of ln(1− x) vs. t are shown in Fig. 4a. As is clearly seen in the figure,
for positive values of γ, the curves apparently follow the “squeezed exponential”
kinetics. On the other hand, for γ < 0 the curves resemble stretched exponential
ones.

Fig. 4. (a) Decays calculated using Eq. (8) with γ equal to –0.5 (stretched exponential),

0 (exponential) and +0.5 (squeezed exponential); (b) the curves of (a) re-plotted in the

coordinates linearizing Eq. (4); the slopes are equal to the values of α. Triangles:

γ = −0.5; circles: γ = 0; diamonds: γ = 0.5 (only every 10th point is shown). The lines

are fits to the points with Eq. (4).

The curves shown in Fig. 4a have been re-plotted in the coordinates proving
that they can indeed be fitted with Eq. (4) for both, negative and positive values
of γ, over a wide range of times and conversions (Fig. 4b). The resulting relation
between γ and the parameter α is shown in Fig. 5.

4. Discussion and final remarks

The results presented in the preceding section point to factors behind the
unusual kinetic behaviour of certain systems: the primordial factor seems to be
a dynamic change of the rate constant occurring during the reaction, associated
with changes in the microenvironment of reacting molecules. Both, “stretched
exponential” and “squeezed exponential” kinetics can be obtained, depending on
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Fig. 5. Relation between the parameter defined in Eq. (7) and the parameter α defined

in Eq. (4). Let us note the “squeezed exponential” behaviour (α > 1) expected for

positive values of γ.

whether the rate constant is a decreasing or increasing function of the reaction
progress. Whilst the former behaviour can also be due to static distributions of
frequency factors and/or activation energies, the latter kinetics must only result
from the dynamic changes.

The simple model put forward in this note does not aim at seeking a quan-
titative agreement with experimental data. The results provided raise, however,
a fundamental question about the microscopic mechanism of the “squeezed ex-
ponential” kinetics. The model implicitly assumes that the act of conversion of
an individual molecule affects the environment of other (unreacted) ones. At the
concentration level of the order of 1% or less, this means that the result of the
conversion act is felt at distances of the order of several nm. One may speculate
that a cooperative process occurring in the liquid crystalline matrix is involved,
similar to (or even identical with) that found by the authors of this contribution
[20, 21] and by other researchers [22] in dye doped liquid crystals. It has been
found that the reaction of a photochromic solute affects the phase stability of the
liquid crystalline matrix. This means that it should affect the long-distance order-
ing of the matrix to a degree depending on the progress of the reaction, and hence
may dynamically modify the kinetic parameters of the reaction. The concept pre-
sented here, however, is only a speculation, and a further research is necessary to
put forward a more advanced model.
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