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Some memory effects in nanoparticle systems, similar to those seen in

spin glass systems, may have important device applications, by tuning the

interaction and the particle size. Recently, this subject provoked a special

interest in nano-sciences. In this work we present a study, by simulation

of the mode in which the behavior of a magnetic nanoparticle system is

influenced by the superposition of the dimensions’ distribution, the effective

anisotropy constants and the disposal of nanoparticles in the sample, if we

take into account the dipolar magnetic interaction.

PACS numbers: 72.15.Lh, 75.50.Tt, 78.20.Bh

1. Introduction

In the magnetization process, the stepped alignment of the magnetic mo-
ments in the field’s direction can take place via two distinct mechanisms. In the
first one, the magnetic moments remain fixed against the single-domain nanopar-
ticle, and under the field’s action, each nanoparticle rotates in such a way that
the orientation of the magnetic moment gets closer to the field’s direction. In
the second one, the magnetic moments rotate against the nanoparticle, which re-
mains fixed. The process by which the nanoparticle assembly gets back to the
thermodynamic balance is called magnetic relaxation.

Due to these mechanisms, two relaxation processes appear [1]: the Brown
relaxation, correlated with the nanoparticles rotation, and the Néel relaxation
connected to the rotation of the magnetic moment inside the nanoparticle. In
the case of a system with single-domain nanoparticles caught rigidly into a solid

∗corresponding author; e-mail: osaci.mihaela@fih.upt.ro

(1203)



1204 M. Osaci, C. Abrudean, A. Berdie

matrix, their rotation is blocked. In this situation, the field rotates only the
orientation of the magnetic moment against the nanoparticle, thus the magnetic
viscosity in such structures is due to the Néel relaxation processes [2, 3].

When the relaxation time τ is smaller than the measuring time, the nanopar-
ticle system has a superparamagnetic behavior, otherwise the relaxation is blocked.
Thus, due to the non-balance phenomena featured by irreversibility and hystere-
sis, in the nanoparticle systems appear magnetic memory effects, which are very
important for applications in magnetic memory devices. In major speciality works
[4–7], these effects are assigned to the appearance of the spine collective states
featured by complex phenomena of spine-glass type. In this context the concept of
blocking temperature TB [4–7], as a temperature when the system is passing to the
spine-glass state, was introduced. In this respect, when the system’s temperature
T < TB, the magnetic moments of the single-domain particles are frozen, e.g. they
do not relax, and when T > TB, the magnetic moments are relaxing. There are
also current works [8] which assign these behaviors to the distribution of the relax-
ation times as a result of the distribution of the nanoparticles’ dimensions and the
effects of dipolar magnetic interaction between them. Due to the distribution of
the relaxation times, some are too small against the measuring time and some are
too big, thus, at a given temperature, even from the interval (TB, T∞) with T∞
high temperature, the magnetic moments of the small particles balance perfectly,
whilst the magnetic moments of the big particles are blocked. In this context, the
memorize effects could be influenced not only by the presence of dipolar magnetic
interactions but also by the distribution of the sample’s particle dimensions. This
idea is verified experimentally on nikel ferrite samples [8], NiFe2O4, embedded into
a SiO2 non-magnetic matrix in various concentrations, prepared by soil-gel tech-
nique. The Mössbauer measurements show that the dipolar magnetic interactions
influence the magnetic ordering only locally and not in the entire sample’s volume
and, moreover, a slowing-down of the relaxation processes in the diluted sam-
ple was noticed, as in the case of the weak dipolar magnetic interaction between
nanoparticles and even at the room’s temperature.

In this paper we will study, by simulation, how the magnetic relaxation pro-
cess in magnetic nanoparticles disperse systems is influenced by the superposition
of three factors: dipolar magnetic interaction, dimensions’ distribution, and the
nanoparticles’ effective anisotropy constants distribution.

2. Model summary

In order to study the dynamics of a magnetic moments system, we consider
that at a given moment the action of the external magnetic field stops, and we
monitor the behavior of the system’s remanent magnetization in time.

We use the tridimensional simulation model presented in [9]. In this model,
we assume that the spherical nanoparticles have an uniaxial anisotropy and are
randomly distributed in the pre-set volume. The first stage of the method consists
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of the generation of the random values of the particle diameters and anisotropy
constants. For this, we used the algorithm presented in [10–12]. The method of
generating a lognormal distribution is based on the relations:

di = eσln dui+ln d0 (1)
for particle diameters, where ui are the values of a Gaussian distribution on (0,1),
with the average equal to lnd0 and the variance equal to σ2

ln d and

ki = eσln ku′i+ln k0 (2)
for particle anisotropy constants, where u′i are the values of a Gaussian distribution
on (0,1), with the average equal to ln k0 and the variance equal to σ2

ln k.
The nanoparticles are randomly distributed in the considered volume. We

assume that rij is the vector which joins the centers of the two particles i and j.
The rij component is generated with the Box Mueller transform [9]:

rij = rmed + σ/
√

(− ln(rand1))[cos(2πrand2) + sin(2πrand2)], (3)
σ is the variances of the rij component.

The study of the particle system behavior begins in the moment when the
external magnetic field action stops (t = 0). In these conditions, the overall
energy of the system is the sum of the anisotropy energy and the magnetic dipolar
interaction energy.

Let M i be the magnetic moment of the particle i and M j the magnetic
moment of the particle j. The magnetic dipolar interaction energy between two
particles i and j is illustrated by the following relation [2, 3]:

Eijd = ε [mi ·mj − 3 (mi · rij) (mj · rij)] (4)

with ε =
µ0

4π

MiMj

r3
ij

, (5)

rij is the unit vector of the direction which joins the particles i and j, mi, mj ,
are the unit vectors of the magnetic moments of the particles i and j, and µ0 is
the vacuum magnetic permeability constant.

Considering the fact that the system particles have an uniaxial anisotropy,
the overall energy of the i particle formula is [2, 3]:

Ei =
∑

j,j 6=i

Eijd −Kivi cos2 θi, (6)

where Ki is the i particle uniaxial anisotropy constant and θi is angle between
magnetic moment of the i particle and anisotropy axis.

We consider the particular case when the magnetic anisotropy energy is
much higher than the thermal energy (KVÀkBT). In this approximation, these
methods [9] use the Ising physical models (with two metastable states). Every
particle i belonging to the system has two possible stable states, separated by
energy barriers Ebi used for calculation of the time unit probability to particle
pass from a stable state into another stable state, P (Ebi). The relaxation time,
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for every particle of the system, is

τi =
1

P (Ebi)
. (7)

The remanent magnetization, depending on the temperature, will be

Mrem(t) = M(0) exp(− t

τ
), (8)

where τ is a medium relaxation time and M(0) is the magnetization in the moment
when the outer magnetic field is released — the saturation magnetization.

3. The relaxation times distribution considering the superposition
of the nanoparticles’ dimensions distribution

and the dipolar magnetic interactions

The simulations were performed on a system with 270 spherical fine parti-
cles of magnetite, with the saturation magnetization MS = 4.7× 105 A/m. In the
first phase we consider that the nanoparticles have the same anisotropy constant
K = 19000 J/m3 and that the particle dimensions have a lognor-

Fig. 1. The reduced remanent magnetization depending on time, for a system of mag-

netite fine particles (concentration 2 × 1023 part/m3), with 3D randomisation, into a

pre-set volume without distribution of particle dimensions (a) and a random distribution

of the diameters with σln d = 0.1 (b), and σln d = 0.15 (c), at the following temperatures:

(1) 100 K, (2) 150 K, (3) 200 K, (4) 300 K.
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Fig. 2. The reduced remanent magnetization depending on time for a system of mag-

netite fine particles (concentration 7.65× 1023 part/m3), with 3D randomization, into a

pre-set volume without distribution of particle dimensions (a) and a random distribution

of the diameters with σln d = 0.1 (b), and σln d = 0.15 (c), at the following temperatures:

(1) 100 K, (2) 150 K, (3) 200 K, (4) 300 K.

Fig. 3. Distribution of relaxation times due to the dipolar magnetic interactions be-

tween nanoparticles at a temperature of 200 K for a concentration of (a) 2×1023 part/m3

(weak interaction) and (b) 7.65× 1023 part/m3 (strong interaction).

mal distribution. The most probable value of the particle diame-
ter is dmp = 9 nm and we work for three values of the variance:
σ2

ln d = 0.01 and 0.0225 (σln d = 0.1 and 0.15). We will study three
cases: without interaction, weak interaction (a particle concentration of
2 × 1023 part/m3), strong interaction (a particle concentration of 7.65 ×
1023 part/m3).

The simulations are performed by using a distance distribution from the ith
particle having the variance σrj = vrrmed,j (j is the neighbors order) with vr = 0.1.

Figure 1 presents the evolution in time of the reduced remanent magnetiza-
tion Mr(t) = Mrem(t)/M0, with M0 — the system’s magnetization in the moment
when the action of the external magnetic field stops, for four different temperatures
of the system of 2× 1023 part/m3 concentration.
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Fig. 4. Distribution of relaxation times due to the distribution of particles’ dimensions

(σln d = 0.1) dipolar magnetic interactions between nanoparticles at a temperature of

200 K without interaction (a), for a concentration of 2× 1023 part/m3 (b) and of 7.65×
1023 part/m3 (c).

One can observe that, in the case of low nanoparticles concentration
(2 × 1023 part/m3), e.g. at weak magnetic interactions between particles, the
reduced remanent magnetization decreases significantly faster in time if we take
into account the interactions, compared to the non-interactive case, but, in re-
turn, the dimensions’ distribution strongly influences the variation in time of the
reduced remanent magnetization, leading even to a blocking situation of magnetic
moments at low temperatures (at 100 K and σln d = 0.15) (Fig. 1c).

In the case of strong dipolar magnetic interaction between particles, e.g. high
particle concentration (7.65× 1023 part/m3), the evolution in time of the reduced
remanent magnetization is presented in Fig. 2. When the particles concentration
in the sample is high, we can observe a more pronounced presence of the dipolar
magnetic interaction. Thus, the reduced remanent magnetization decreases in time
slower than for the non-interactive case, e.g. the average relaxation time increases
by an increase in interaction’s strength. If we also overlap the distribution of the
particle dimensions over the effect of dipolar magnetic interactions, a much slower
decrease in the reduced remanent magnetization in time is obtained, with blocking
stages of the magnetic moments’ orientation even at not very low temperatures
(Fig. 2b and c).

We present in Fig. 3 the distribution of the nanoparticles’ individual relax-
ation times due to dipolar magnetic interactions at a temperature of 200 K, and
in Fig. 4 the effects of the superposition of the dipolar magnetic interactions and
distribution of nanoparticles’ dimensions upon the relaxation times’ distribution,
at a 200 K temperature.

From the analysis of Figs. 3, 4 it results that the overlapping of the effects of
the dipolar magnetic interactions and the distribution of the particles’ dimensions
leads to a displacement of the relaxation times’ distribution towards higher values.
It is interesting to see what is happening if upon these effects we also overlap the
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effect of the distribution of the particles’ effective anisotropy constants (study from
Sect. 4).

4. The relaxation times distribution in the case
of superposition of dimensions’ distribution, of effective anisotropy

constants, and of dipolar magnetic interactions

In this section we also consider a lognormal distribution of the nanoparticles’
effective anisotropy constants. This variation of the effective anisotropy constants
is justified [13–16] by the appearance of a surface anisotropy of the nanoparticles, a
structural anisotropy resulted from the discontinuity of the magnetic interactions
between individual spines from the particle’s surface.

In the magnetite nanoparticle system with a concentration of 2 ×
1023 part/m3 (weak dipolar magnetic interaction), we consider a lognormal distri-
bution of the particles’ diameter with the variance σ2

ln d = 0.0025 (σln d = 0.05),
taking into account the dipolar magnetic interaction, and we consider a lognormal
distribution of the effective anisotropy constants, with the most probable value of
the effective anisotropy constant K = 19000 J/m3 and the variance of the distri-
bution which takes different values, i.e. 0.01, 0.0225, and 0.04 (σln K = 0.1, 0.15,
and 0.2).

In the first stage, in order to have a comparison term for the introduction
of the effective anisotropy constants’ distribution, we consider the nanoparticles
having the same effective anisotropy constant, but in return they show a distri-
bution of the dimensions with the 0.0025 variance (σln d = 0.05). In Fig. 5 we
present the relaxation times distributions of the considered nanoparticle system
at a temperature of 200 K.

Fig. 5. Relaxation times distribution due to the particle dimensions distribution

(σln d = 0.05 left) and dipolar magnetic interactions between nanoparticles at a tem-

perature of 200 K for a concentration of 2× 1023 part/m3 (right).

Figure 6 shows the histograms of the nanoparticles’ relaxation times for the
case when the variance of the dimensions distribution is kept, but the variance of
the effective anisotropy constants’ distribution increases.

From the figures obtained by simulation and presented above (Figs. 5, 6) we
can see that the higher the variance of the effective anisotropy constants’ distri-
bution, the more the maximum of the relaxation times histogram moves towards
higher time values, e.g the average relaxation time increases.
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Fig. 6. Relaxation times distribution due to the particle dimensions distribution

(σln d = 0.05), distribution of effective anisotropy constants ((a) σln K = 0.1), ((b)

δln K = 0.15), ((c) σln K = 0.2), and dipolar magnetic interactions between nanoparti-

cles at a temperature of 200 K for a concentration of 2× 1023 part/m3 (low parts).

Figure 7 shows the dependence of the average relaxation time on the sys-
tem’s particle concentration at a 200 K temperature, for the considered mag-
netite nanoparticle system, when considering the superposition of the distribu-
tions of dimensions, effective anisotropy constants, and dipolar magnetic interac-
tions. This dependence shows that for diluted systems the relaxation time de-
creases by increasing the concentration, reaches a minimum at a concentration of
5.7× 1023 part/m3, after which, for concentrated systems, starts to increase more
by increasing the concentration.

Some experimental research studies of last period about the connection be-
tween the dipolar magnetic interaction strength and the relaxing time give us these
results. Experimental measuring shows us, on the one side, that the relaxing time
in such systems increases in the same time with the nanoparticle concentration
decrease, which means it increases at the same time as the interaction strength’s
increases [12, 17–19], and on the other side, it shows a relaxing time decrease at
the same time as the interaction strength increases [20].

Concerning the influence of the effective anisotropy constants’ distribution
of the nanoparticles, it can be noticed that as the distribution’s variance increases,
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Fig. 7. Dependence of the average relaxation time of the particle concentration for a

system of magnetite fine particles with a random distribution of the diameters (σln d =

0.1) at a 200 K temperature, (1) without effective anisotropy constant distribution;

(2) with effective anisotropy constant distribution (σln K = 0.15); (3) with effective

anisotropy constant distribution (σln K = 0.2).

the average relaxation time increases, the increase being more pronounced for the
more diluted systems and less pronounced for the more concentrated systems.

5. Conclusions

In this work, a three-dimensional model was used for studying the superpo-
sition of the dimension distributions, the effective anisotropic constants, and the
dipolar magnetic interactions for magnetic nanoparticle systems. In this model,
the particles are arranged in a volume randomly, with a Gauss distribution gener-
ated with the Box–Mueller relation. This model is used to perform a simulation
to determine the distributions for the relaxation times for weak and strong inter-
actions at a 200 K temperature, the dependence of the medium relaxation time
on the particles concentration at a 200 K temperature, and the dependence of the
reduced remanent magnetization on time at different temperatures.

Considering the dipolar magnetic interaction between particles, one can ob-
serve that the average relaxation time is influenced by both the particle concen-
tration and the particle volume. Generally, a decrease in the average relaxation
time is obtained by increasing the particle concentration for diluted systems, and
a pronounced increase in the average relaxation time is obtained by increasing the
particle concentration for concentrated samples.

In addition, the distribution of the particle dimensions leads to a displace-
ment of relaxation times distribution towards higher values, and by additionally
considering a distribution of the nanoparticles’ effective anisotropy constants, a
significant increase in the relaxation times is obtained, especially for the more
diluted systems.
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The results obtained in this work aim to complete the idea that these mag-
netic nanoparticle systems can be used for memory devices with special properties
by the control of the dipolar magnetic interactions (modifying the distance be-
tween particles by modifying the particles concentration in the sample), by the
control of the particle dimensions distribution and the effective anisotropy con-
stants (through the technology of producing nanoparticles).
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