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A digital implementation of the Fourier holography scheme with identi-

cal reference and signal beams is considered. Investigations of the properties

of this scheme were reported on in a number of papers. At the same time a

concept of virtual optics is widely used in data encryption and data process-

ing, whereas digital implementation of the Fourier holography scheme may

be provided using not only discrete Fourier transform. Another discrete dig-

ital transform may be used as soon as it has several properties similar to

the Fourier transform. The Walsh transform is the subject to consider in

this work. A comparison of digital Fourier and Walsh versions of the named

holographic scheme is conducted by means of their associative properties.

Considered is the retrieving of information stored in the hologram using

parts of different amounts of the original data. Comparison is provided with

the two types of data stored: a raster image representing visual information

and an image representing a set of data bits. Comparable parameters are the

mean image contrast for visual data image and the bit detection accuracy

for a set of data bits.

PACS numbers: 42.30.Kq, 42.30.Va, 42.30.Sy, 42.40.–i

1. Introduction
In recent years the investigations in holography concerning the issues of cor-

relators, data processing and encryption etc. have been more and more becoming
rather of simulation than of real experiments. Such a shift in research methods
comes, on the one hand, from the development of analytical and computational ap-
paratus of Fourier holography, and, on the other hand, from well studied and well
predictable properties of Fourier holograms. In many cases there is conceptually
no need to switch from simulation to a real experiment. This is a so-called concept
of virtual optics (VO) [1, 2]. The VO means the implementation of data processing
or encrypting algorithms based on certain optical setup and involving correspond-
ing data transformations. Almost always the kernel of those transformations is
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either Fourier transform (FT) [1] or fractional Fourier transform (FRFT) [3, 4].
However, abstracting from optical fundamentals of VO, any other transform may
be used as a kernel as soon as it has certain properties similar to FT. Probably,
the use of some kernel more specific to digital data than FT can produce more
effective VO algorithm.

As shown in [5], a concept of logical holography in the domain of lattice
functions may be built up on the base of Walsh transform (WT). WT is funda-
mentally discrete as against to discrete FT which is only the sampled version of
fundamentally continuous FT. In this paper we consider consequences of such ker-
nel change from FT to WT in VO algorithm based on Fourier-holography scheme
with identical reference and signal beams. This scheme is known mainly for the
capability of reconstruction of stored image dependent on recognition of the part
of that image, in other words the associative image reconstruction [6, 7].

2. Optical setup and fundamentals

The original optical setup of Fourier holography with identical reference and
signal beams is shown in Fig. 1. The laser beam from laser L comes through the
beam expander BE to the transparency T (with target image) coupled with the
random phase modulator D (the diffuser). Then, split by beam splitter BS, it
produces the two identical beams 1 and 2. The beams are brought together on
the hologram H in the focal plane of the first FT-objective O1 with the help of
deflecting mirror BD. Actually, the beams are not strictly brought together. A
slight misalignment introduced by the mirror BD is needed for the proper operation
of the setup. At that the hologram is recorded. The restoration of the hologram
is carried out with partially masked (to the different extent) transparency T and
blocked beam 1. The beam restored in +1 diffraction order comes through the
second FT-objective to form the image on the CCD array of camera C, connected
to computer PC, where the restored image may be observed and saved.

Fig. 1. Fourier holography with identical reference and signal beams, the original setup.

L — laser; BE — beam expander; T+D — transparency image coupled with the diffuser;

BS — beam splitter; BD — beam deflector; O1, O2 — Fourier-transform objectives;

H — hologram; C — CCD camera; PC — computer.

The mathematics of the operation of the scheme is the following. The com-
plex amplitude of the wave restored in +1 diffraction order in the plane just after
the hologram is described as [7]:
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R+1 = A∗AsAp (1)
and in the plane of CCD-array

r+1 = F−1{R+1} = (as ⊗ a) ∗ ap ≡ (ap ⊗ a) ∗ as. (2)
In the above formulas a and ap denote complex amplitude of the wave passed
through the transparency coupled with the diffuser, unmasked and partially
masked accordingly, as denotes the complex amplitude of the wave correspond-
ing to the beam 2. A and Ap are the FTs of the a and ap, accordingly. As is the
FT of as — the same as A, but slightly shifted in the hologram plane. F−1{. . .} is
the inverse FT operator, ∗ is the complex conjugation, ⊗ and ∗ are the correlation
and convolution operators, accordingly. The two convolution-correlation notations
given in formula (2) are possible due to commutative property of multiplication in
the Fourier domain.

The part of the original image ap is recognized in the correlation ap ⊗ a

(see (2), the second notation) thus producing δ-like function which subsequently
produces the image close to original by means of convolution with as. On the
other hand, the possibility of producing δ-like function by as⊗a and subsequently
restoring the image close to ap is suppressed by the shift in Fourier domain in-
troduced to as by the mirror M as mentioned above. Thus the restoration of the
image close to the original occurs as soon as ap is the part of that original image.

3. Computational fundamentals

In this section we describe some basics and some important peculiarities
of VO computations for this scheme due to the properties of both FT and WT.
Everywhere here we consider two-dimensional case.

3.1. Discrete Fourier transform

By definition the discrete FT (DFT) Akl of the lattice function amn given
for n = 0, . . . , N − 1, m = 0, . . . ,M − 1 is

Akl =
∑
m,n

amnωmk
M ωnl

N , (3)

where ωM = M
√−1 = e−2πi/M , k = 0, . . . , M − 1, l = 0, . . . , N − 1, or in matrix

form

A = F MaF N , (4)
where the matrices A, a, F M , F N are of sizes of M×N , M×N , M×M and N×N

with elements of Akl, amn, ωmk
M and ωmk

N , accordingly. The rows and columns of
transform matrices F M , F N are sampled complex exponential functions.

In VO calculations involving multiplication in the Fourier domain (convo-
lution or correlation in image domain) at least twice larger matrices than the
processed image itself should be used to produce the result consistent with real
experiment. This is because of expansion of the result of convolution (correlation)
due to partial overlapping of convolved functions. In the case of DFT if such an
expansion appears larger than the matrix used it wraps inside at the borders and



1104 A. Derzhypolskyy, D. Melenevskyy, A. Gnatovskyy

introduces an additional noise to the output. Ideally the matrix should be the
larger the more multiplications in FT domain are involved. But in practice it is
quite enough to use the matrix just twice larger than the image itself.

Shift in FT domain introduced in As (1) is, of course, discrete in DFT VO
calculations and is represented by element-wise circular shift of the corresponding
matrix.

3.2. Walsh transform

Walsh transform Akl of the lattice function amn given for n = 0, . . . ,

N − 1, m = 0, . . . , M − 1 in the matrix form is defined as

A = HMaHN , (5)
where HM and HN are the Hadamard matrices of size of M ×M and N × N ,
accordingly. The rows and the columns of Hadamard matrices are the Walsh func-
tions. The basic definition of Hadamard matrices is the following [8]:

H1 = [1], H2N =

[
HN HN

HN −HN

]
, N = 2n. (6)

There are also another definitions with N other than power of 2 but those are not
commonly used.

Analogously to FT the multiplication in WT domain corresponds to convo-
lution in image domain. However, in this case the convolution is quite different
than in FT, it is the logical convolution and it has another definition in image
domain. The most important property of logical convolution as for the purpose of
this work is that its result is not expanded and has the same size as the convolved
functions. Hence there is no need to use matrices larger than the image itself.

Another important in VO peculiarity of WT against FT is that the
Hadamard matrices are real while the FT transform matrices are complex.
Thereby for real functions convolution and correlation that only differ by com-
plex conjugation in FT domain are indistinguishable in WT domain. That is why
only the complex diffuser (coupled with the transparency in the scheme in Fig. 1)
should be used in WT VO calculations, whereas in FT calculations the binary
diffuser with transmittance +1 and –1 may be successfully used.

The last but not the least important peculiarity of WT implementation of the
considered VO scheme is the representation of the shift needed to be introduced
in As (1). The shift in WT domain is represented as the logical shift of the
corresponding matrix [5].

4. Computational experiment

The VO computational experiments with both FT and WT were carried out
in MatLab 6.5R13. The images were of size of 512× 512 pixels. The diffuser was
represented as a matrix of complex numbers eiφ with argument φ being a random
number with uniform distribution in range [0, 2π]. FT was performed by the built-
-in MatLab function fft2 with zero-padding the image to the size of 1024× 1024.
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Fig. 2. The images used in contrast test (a) and bit detection test (b).

WT was performed following the formula (5) with Hadamard matrix produced
following the definition (6). The shift was horizontal with value of 32 pixels.

The two different images were used to conduct the two types of the exper-
iments. In both experiments there was studied the quality of the image restored
by VO scheme with different level of masking of restoring image. The first exper-
iment was performed with black-and-white image containing several objects and
representing some visual information (Fig. 2a). The measured parameter here was
the average contrast in restored image

V =
Imax − Imin

Imax + Imin
, (7)

Imax and Imin are the average intensities of the areas of restored image correspond-
ing to black (Imin) and white (Imax) areas of original image. For the original image
V0 = 1, because Imax = 1 and Imin = 0 and V = 0 for uniformly painted image.
For the restored image it decreases as the masking level increases. The second
experiment was carried out with the image composed of equal number of black
and white squares placed in fixed positions in random order (Fig. 2b). The image
was representing a set of 1024 data bits, and the measured parameter was the bit
detection accuracy (BDA) for the restored image

D =
T − F

T + F
, (8)

where T (true) is the number of correctly detected bits and F (false) is the number
of incorrectly detected bits. It is clear that in this case always T + F = 1024. Bit
detection procedure is the following:

1) obtaining the average intensity over whole image IA;

2) averaging the intensity in the output image over every fixed square area
representing single bit;

3) threshold the intensity of every single bit area by IA;

4) read the bits states.

D = 1 for all the bits detected correctly and D = 0 for the case of stochastic
detection, when only a half of the bits is detected correctly just by chance. For
the restored image it decreases as the masking level increases.
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Fig. 3. The results of the experiments for contrast (a) and bit detection accuracy (b).

V — mean contrast defined by (7); D — bit detection accuracy defined by (8); S —

open area of the reconstructing image.

The output results of the experiments are the dependences of V and D

against the open area S of the restoring image. Corresponding plots are shown in
Fig. 3a (V ) and Fig. 3b (D).

5. Conclusions

As seen from the results (Fig. 3a,b) our VO scheme works better in contrast
test exploiting FT while WT works better in bit detection test. That means
that FT produces subjectively better looking image with less amount of noise
whereas WT produces images with more homogeneous noise, which is obviously
more important in task like bit detection.

From Fig. 3b it is clear that the dependence D(S) begins with almost linear
rapid rise up, reaches the value of 1 and then does not change. At that such
dependence may be characterized with just one parameter. Let us call it the
fallout point. Thus we may state that our VO scheme based on FT has a fallout
point at 34% of open area of restoring image. And the WT-based scheme has a
fallout point at 19%, which is significantly better than the FT case.
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