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We investigate tunneling times of a particle with energy dependent ef-

fective mass for a one-dimensional real potential. General relations between

phase, group and dwell times are obtained for a desired potential shape. For

the textbook case of a real rectangular potential barrier the explicit rela-

tions for relevant times are derived, which reveal that the nonparabolicity,

depending on the energy of incident particle, may substantially increase the

group time in realistic structures. Further, we extend this theory to the case

of absorptive media described by complex potentials, via introduction of a

new absorptive tunneling time τa. Depending on whether the short wave-

length or long wavelength limit is considered, maximization of τa results in

a very different shape of a complex rectangular potential.
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1. Introduction

The old problem of adequately defining relevant tunneling times regained
on its urgency after realization of transistors operating on tunneling through dou-
ble potential barrier by Capasso et al. [1]. The fact that the tunneling time
is considered to be one of the most important parameters in the evaluation of
high-speed device performance, gave rise in last years to the increasing interest in
spin-dependent tunneling in the field of spintronics [2]. A variety of answers to the
question of how much time does the tunneling take has been offered in the last six
decades [3–9].

Numerous definitions of the tunneling time can be found in [10], and of prime
importance are the so-called phase time or group delay time and dwell time. The
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two contributions of asymptotic phase times seemed impossible to be disentangled,
until a satisfactory answer was given in [11, 12]. In [13] Winful showed that the
group delay is equal to the sum of the dwell time and self-interference delay.

In the first section of the paper we extend Winful’s theory to the case of
energy dependent effective mass, including the terms due to nonparabolicity, and
derive the explicit relations for the tunneling times for the text book case of rect-
angular real barriers. The second part of the paper deals with the relationship
between group, dwell, and self-interference time for a complex potential of an
arbitrary shape.

2. Real potential

We start with one-dimensional real potential barrier V (z), 0 < z < L. A
particle of momentum h̄k and energy E propagates from left to right. Upon
reaching z = 0 a part of wave is reflected and the rest transmitted. Transmission
and reflection probabilities are given by the squares of amplitudes of transmission
coefficient T = |T | exp(iφt) and reflection coefficient R = |R| exp(iφr), respectively.
The total group delay (the delay in the appearance of the wave packet at the
front and at the end of the potential barrier) is given by the sum of the group
delay in transmission τgt and reflection: τg = |T |2h̄dφ0/dE + |R|2h̄dφr/dE, where
φ0 = φt + kL.

On the other hand, the dwell time is the total time the particle spends in
the barrier, regardless of whether it is mostly transmitted or reflected [5, 14]:

τd =
m

h̄k

∫ L

0

|ψ(z)|2dz. (1)

To establish the relationship between group and dwell times given we use
the procedure given in [14]. The general expression for the wave function in case
of finite barrier is

ψL = eikz + Re−ikz, −∞ < z ≤ 0,

ψB = χ(z, k), 0 ≤ z ≤ L,

ψR = T eikz, L ≤ z < +∞, (2)
where indices L, B, and R denote left, barrier, and right part of the z axis and
k2 = 2m0(E)E/h̄2. The nonparabolicity is accounted for via m(E) = m∗[1+(E−
V (z)]/Eg(z). Outside the barrier V (z) = 0, hence m0(E) = m∗

0(1 + E/E0
g) =

m∗
0α0, where E0

g is the energy gap of a semiconductor outside the barrier.
After somewhat lengthy but simple manipulations (as a guideline see for ex-

ample derivation in [13]), we finally get the relationship between group time, delay
time, self-interference time, and an additional nonparabolic term

τg = τd + τP
i /α0 − h̄

2kµ0

∫ L

0

∂µB

∂E

∂ψ

∂z

∂ψ∗

∂z
dz = τd + τP

i /α0 + τnp, (3)

with interference time in the case of parabolic dependence of energy on effective
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mass defined as τP
i = −h̄Im(R)/k(∂k/∂E), and µB(z, E) = h̄2/mB(z,E) is re-

ciprocal of effective mass within the barrier. It is easy to check that this reduces
to the well known relation between group, delay and self-interference time if the
nonparabolicity is absent, because the third term disappears and (3) then reduces
to τg = τd + τP

i .

2.1. Real rectangular barrier
Now we specialize to the text-book example of a rectangular barrier (V (z) =

V0), where a fully analytic calculation is possible. The effective masses outside
and inside the barrier are given by: m0(E) = m∗

0(1 + E/E0
g) = m∗

0α0 and
mB(E) = m∗

B[1 + (E − V0)/EB
g ] = m∗

BαB, where m∗
0, m∗

B, E0
g , and EB

g are the
position dependent effective masses and energy gaps outside and inside the po-
tential barrier, respectively. The wave function inside the barrier is of the form
ψB = Aeκz + Be−κz where κ2 = 2mB(E)/h̄2(V0 − E). From the continuity of the
wave function and of 1/m(z,E)(dψ/dz), we can calculate the coefficients A, B,
T , R, and consequently the relevant tunneling times. Here we give expression for
the nonparabolic term only

τnp =
h̄

2(E − V0)
αB − 1

αB

(
1 + δ2

4δ|g|2 sinh(2κL)− ∆
|g|2 κL

)
. (4)

where δ = mB(E)/m0(E) · (k/κ), ∆ = (1− δ2)/(2δ), g = cosh(κL) + ∆ sinh(κL),
φ0 = − arctan(∆ tanh(κL)), φr = −π/2− arctan[∆ tanh(κL)].

The tunneling times in the energy-independent effective mass case are easily
obtained by setting α0 = αB = 1, which is the case of coordinate dependent mass
only. In this case we get the well known relation [13]: τg = τd + τi.

Suitable candidates for demonstrating the influence of nonparabolicity on
tunneling times are material systems having substantial barrier heights, compared
to the energy gaps in the materials, one of which is InGaAs/AlAsSb system. In

Fig. 1. The dependence of group time on the incident electron energy, calculated for

a In0.53Ga0.47As /AlAs0.56Sb0.44/In0.53Ga0.47As structure with L = 20 Å wide barrier

layer, with (solid) and without (dashed line) the semiconductor nonparabolicity taken

into account.
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particular, the calculated group time dependence on the particle energy in Fig. 1
confirms such expectations. It is worth noting that the inclusion of nonparabolicity
is most significant at low particle energies.

3. Complex potential

We start with one-dimensional complex potential of the form Uc(z) =
Ur(z)− iUi(z). We shall suppose that both real and imaginary part of the po-
tential occupy the same part 0 < z < L of z axis (U(z) = 0 for all z out of (0, L)).
Further, we shall consider effective mass to be independent of both coordinate and
energy throughout the structure.

Introduction of negative-definite imaginary part of the potential (Ui > 0)
describes absorption of the probability flux of the electronic system into unknown
channels. Absorption A is given by

A(E) =
2
h̄

∫ L

0

Ui|ψ(z)|2dz/Jinc =
2m

h̄2

∫ L

0

Ui|ψ(z)|2dz, (5)

where Jinc = h̄k/m is the incident particle flux, impinging on the barrier from
−∞.

Using the definition of the current and the expressions for the wave function
in front of and behind the barrier (the same form as in (2) only with complex wave
number), a quasi-unitary condition is obtained: R(E) + T (E) +A(E) = 1, where
T = |T |2 and R = |R|2 are transmission and reflection probabilities.

We employ the same procedure as in the first section to get the relationship
between the tunneling times, and give only the final result

τd = τg − τi − 2m

h̄k

∫ L

0

UiIm
(

ψ∗
dψ

dE

)
dz = τg − τi + τa, (6)

where τa originates from the finite value of the imaginary part of the potential. In
the absence of the absorption (τa = 0), Eq. (6) directly reduces to the well known
relationship [13]: τd = τg − τi.

3.1. Rectangular complex barrier

Now we turn our attention to the case of a complex potential extending
over the finite region of space. We choose a simple convenient one-dimensional
rectangular-like potential [15]: U = [h̄2/(mL)](βr − iβi), 0 < z < L, and U(z) = 0
otherwise, with βr and βi being positive constants.

We search for the potential configuration leading to the maximum reduction
of the group time (τg = τd + τi − τa). The following dimensionless parameters are
defined as K = kL, Br = 2βrL and Bi = 2βiL, k being the wave number outside
complex barrier. Two limiting cases are of prime interest: the long wavelength
limit, which corresponds to K ¿ 1 or λ = 2π/k À L, and the short wavelength
limit K À 1 or λ ¿ L.

The large values of τa in the long wavelength limit K ¿ 1 are obtained
for predominantly imaginary potential (see Fig. 2). Increase in K shifts away
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Fig. 2. Dependence of τa (relative units as in Fig. 1) on real and complex parts of

the potential for K = 0.2 (long wavelength case). For this potential configuration the

incident particle flux is distributed as follows: T = 0.43, R = 0.13, A = 0.44.

the absolute maximum from purely imaginary potentials (Fig. 2). In the short
wavelength regime (K À 1) we get the maximum values of τa for the imaginary
part of the potential negligible compared to the real part (the maximum absorption
(A = 1) in the short wavelength limit is reached for purely imaginary potential).

4. Conclusion

Tunneling of a particle with energy dependent effective mass through one-
dimensional potential barrier was considered, and general relations between phase,
group, and dwell times are derived for an arbitrary potential. Depending on the
material parameters, i.e, barrier height, energy gap values etc., accounting for the
nonparabolicity may increase the group time up to 30% in realistic structures.

Also, for the case of complex potentials we extend present theory to account
for the absorptive tunneling time τa. Its influence on group delay is most pro-
nounced for mainly imaginary potential in the long wavelength limit. Contrary
to it, in the short wave length limit the maximum reduction in the group time is
found for the potentials with only small imaginary part.
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