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Semi-analytical method of surface plasmon frequency calculation for the

system of two almost touching coupled dielectric coated metallic nanospheres

is presented. The method allows transforming the problem to numerical so-

lution of two simple algebraic equations for arbitrary values of parameters

— particle radius, distance between sphere centers, dielectric permittivity

of the matrix, dielectrics and metals. It is especially easy to get the ob-

vious graphical solution. The surface plasmon frequencies of longitudinal

and transversal oscillations of the system are calculated and good agreement

with the experimental results is achieved.

PACS numbers: 73.22.–f

1. Introduction

The calculation of surface plasmon (SP) frequencies of metallic nanoparticles
(MNP) with size less than SP wavelength can be reduced to the electrostatic
boundary problem. It is well known that this problem is solved analytically only for
two cases: sphere and spheroids. For more complicated shapes special approximate
methods are developed to determine the SP resonance frequencies as a function
of particle shape and size [1–4]. The problem becomes more complicated for a
pair or array of closely spaced MNPs that are currently of great interest due
to their applications in surface enhanced Raman scattering, nanotechnology, and
biosensors [5–8]. The main peculiarity of these systems is conditioned by the effect
of near-field interaction leading to the significant changes of SP spectra [5, 6, 9–16].

For the calculation of plasmon resonances of coupled particles the boundary
integral method is employed [17, 18]. This approach has the advantage that in
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numerical calculations with the use of the finite elements method only the particle
surface is discretized instead of discretizing its complete volume. The aim of dis-
cretization is reducing the integral equation to the algebraic eigenvalue problem
for SP modes. This procedure, however, still requires substantial computing time
as to reach satisfactory accuracy it is necessary to divide the boundaries into very
large number of elements. Also there are many parameters determining the SP
frequency, that increase the computing time: the interparticle distance, dielectric
function of the bulk metal that in case of noble metals accounts for the d-electron
contribution, plasma frequency for bulk metal, and the dielectric constant of host
matrix. To overcome above-mentioned difficulty, we have developed an analyt-
ical approach in the frame of boundary integral method and presented in this
paper. The approach allows easy obtaining of the SP frequencies of two coupled
identical spheres for arbitrary values of all parameters. In our approach, we ne-
glect the retardation effects meaning that the particle size and the interparticle
distance are smaller than the plasmon wavelength, which takes place in various
experiments [10, 19].

2. Calculation of SP frequencies

In this section we prove that for the systems with zero total charge it is
possible to find a point O′, with respect to which all the components of quadrupole
moment tensor vanish. If the contribution of the quadrupole moment in the charge
distribution is essential, the electric field of a system can be substituted by the field
of a point dipole located at the point O′. It will be shown below that this method
as applied to the boundary problems allows obtaining physically clear approximate
analytical results that coincide with high degree of accuracy with numerical ones.
Let us consider the system with zero total charge. If the origin is displaced by the
vector δ, then we have∫

ρ(r)(r − δ)dV =
∫

ρ(r)rdV = d, (1)

where ρ(r) is the charge density, d is the dipole moment of the distribution.
Due to (1) the dipole moment is independent of the position of the origin of the
coordinates. As to higher multipoles, their values generally saying depend on the
position of the point with respect to which they are calculated. This means that
in principle, by proper choice of the origin, all the components of the quadrupole
moment tensor can be set equal to zero. Further, we consider for the longitudinal
oscillations the case of axial symmetry with respect to Z-axis and displace the
origin O by δ along the Z-axis to the point O′ in order to satisfy the condition

D′
ZZ =

∫
ρ(r)

[
2(z − δ)2 − x2 − y2

]
dV = DZZ − 4dZδ = 0. (2)

Since DXX = DY Y = − 1
2DZZ [20] and dX = dY = 0, all the components of

the tensor vanish, if we choose the magnitude of δ as follows:
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δ =
DZZ

4dZ
. (3)

In case of transversal oscillations the electron gas in the spheres oscillates
in the direction X perpendicular to the axis Z. Thus, the displacements in both
cases of longitudinal and transversal oscillations are determined by the dipole and
quadrupole moments of the system with respect to the origin of coordinates O.
Below the electric field of a neutral system in an external non-uniform field will be
substituted just by the field of a point dipole located at the point O′. It is clear
that the presented approach has an advantage in solving of boundary problems
when higher than quadrupole moments of charge distribution can be neglected.
The introduced approach can be characterized as “eliminated quadrupole moment
approximation” (EQMA).

Let us consider two metallic spheres coated by dielectrics with dielectric
constants correspondingly ε1 and ε2, and embedded in media with dielectric con-
stant ε0. The dielectric functions of the metals are correspondingly ε3 and ε4. The
distance between the centers of the spheres is a, and the radii R1 of the metallic
cores are equal to each other. As to the dielectric coatings they have the same
radii R (see Fig. 1).

Fig. 1. Transversal dipoles, in-phase oscillations.

First consider transversal dipoles that oscillate in-phase and apply the
EQMA method.

In the expansion of the electric field potential Φ of the first dipole placed at
the point O′ in the vicinity of the center of the second one we keep only dipole
and quadrupole terms

Φ =
p1r sin ϑ

a3
1

− 3p1r
2 sin ϑ cos ϑ

a4
1

+
D2XZ

r3
sin ϑ cosϑ, (4)

where r is the distance from the center of the second sphere. Let us consider for
simplicity of the calculations that the spheres are identical, i.e. the dielectrics and
metals are the same. We search for the dipole and quadrupole moments of the
second sphere with respect of its center in the induced potential (4) by solving
the electrostatic boundary problem and obtain the following equations for ε4(x),
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where x = δa−1:



ε4(x) = ε2
2

6−2
3ε2+2ε0
ε2−ε0

R5
1

R5 +

(
3

3ε0+2ε2
ε2−ε0

−6
R5

1
R5

)
a5

R5 x(1−x)4

−2− 3ε2+2ε0
ε2−ε0

R5
1

R5 +

(
− 3ε0+2ε2

ε2−ε0
−3

R5
1

R5

)
a5

R5 x(1−x)4
,

ε4(x) = ε2

−2+
ε0+2ε2
ε2−ε0

R3
1

R3 +

(
−2

2ε0+ε2
ε2−ε0

+
R3

1
R3

)
a3

R3 (1−x)3

1+
ε0+2ε2
ε2−ε0

R3
1

R3 +

(
ε2+2ε0
ε2−ε0

+
2R3

1
R3

)
a3

R3 (1−x)3
.

(5)

Eliminating x from Eqs. (5) it is possible to find the dependence of ε4 on all
the parameters ε0, R, R1, ε2, and a. This procedure can be carried out numerically
or graphically.

Counter-phase oscillations (when the dipoles have opposite directions) as
well as both cases of the longitudinal oscillations can be described in the way
presented above.

3. Results

After plotting two functions ε4(x) (Eq. (5)), we find the point of intersection.
Finding ε4 as ordinate of this point, it is easy to find the surface plasmon frequency
from the following equation [20]:

ω(x) =
ωp√

εd − ε4(x)
, (6)

where ωp is the bulk plasma frequency and εd is the d-electron contribution into
the dielectric function of the metal, determined experimentally [21].

We compare our calculations with the experimental results presented in [6].
In Fig. 2 we represent graphically the results of our calculations for in-phase
transversal and longitudinal oscillations. Despite the fact that we do not dis-

Fig. 2. The dependence of the surface plasmon frequencies on interparticle distance for

in-phase transversal and longitudinal oscillations.
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cuss in this study the role of substrate under the particles, an obvious similarity
in corresponding functions is present. The metal spheres (Au in this case) with
diameters 42 nm and 87 nm are covered by 4 nm shells with average dielectric
constant equal to 2.56, and the dielectric constant of the matrix is 2.25. In case of
longitudinal oscillations the 87 nm core lies above the 42 nm core in qualitatitave
correspondence with the experimental results of [6]. We note that the general
behaviour of the SP wavelength dependence on interparticle separation coincides
with that of [6].
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