
Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 5

Proceedings of the International School and Conference on Optics and
Optical Materials, ISCOM07, Belgrade, Serbia, September 3–7, 2007

Using 2D Distributed Feedback

in Optical Laser

V.R. Baryshev∗, N.S. Ginzburg, A.M. Malkin

and A.S. Sergeev

Institute of Applied Physics, RAS, Nizhny Novgorod, Russia

Dynamics of a laser exploiting two-dimensional distributed feedback is

considered. Two-dimensional distributed feedback can be realised using a

dielectric structure (two-dimensional Bragg resonator) with the width having

double-periodical modulation. It is shown that such a structure can provide

production of spatial coherent radiation from extended active medium of

planar geometry.
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1. Introduction

The concept of traditional distributed feedback (DFD) laser is based on the
propagation of guided waves in a dielectric structure with single periodical modula-
tion [1, 2]. Such structure forms 1D Bragg resonator where two counterpropagating
waves provide a feedback circle. The selective properties of the above resonator are
sufficient for mode control over the longitudinal index. In planar geometry spatial
synchronization of radiation over another transverse coordinate can be provided
by diffraction if the transverse size of the system b is restricted by the Fresnel
condition b2/lλ < 1, where l is the system length. In our paper we describe an
effective method for the spatial synchronization of radiation in the case of large
Fresnel parameter: b2/lλ À 1 that is based on using 2D distributed feedback. In
microwave electronics 2D distributed feedback was suggested in [3, 4] to produce
spatially coherent radiation from either sheet or annular high-current relativis-
tic electron beam with the transverse size greatly exceeding the wavelength and
can be realised in planar and coaxial 2D Bragg cavities with a double-periodical
corrugation of the metallic walls. In this structure mutual scattering of the elec-
tromagnetic energy fluxes propagating in the forward, backward and transverse
directions (relative to the direction of the electron beam propagation) takes place.
The additional transverse electromagnetic energy fluxes act to synchronise radia-
tion from different parts of a large size electron beam.
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A laser active medium should provide an isotropic amplification of all the
partial waves independently of directions of their propagation. In optics the 2D
distributed feedback can be realised using a dielectric structure with the width
having double-periodical sinusoidal modulation

b =
b0

2
[
cos

(
h̄(x− z)

)
+ cos

(
h̄(x + z)

)]
, (1)

where b0 is the amplitude of corrugation, h̄ = 2π/D, D is the period of corrugation
along x and z directions. Under Bragg resonance conditions: h = h̄ (h is the wave

Fig. 1. 2 D DFB laser schematic.

number of the fundamental eigenmode of the regular dielectric waveguide) we can
arrange coupling and mutual scattering of four wave fluxes propagating in the ±z

and ±x directions (see Fig. 1):

E = E0(y)Re
((

Az
−e−ihz + Az

+eihz + Ax
−e−ihx + Ax

+eihx
)
eiωt

)
, (2)

where E0(y) is the transverse structure of the fundamental eigenmode of the di-
electric waveguide without the corrugation. For practical applications similarly to
the case of metallic waveguide [4] it is sufficient to approximate sinusoidal modu-
lation by chessboard function (see Fig. 1).

2. The model

We will describe the interaction between the field and the active medium
within the framework of semiclassical approach [1, 5]. Taking into account the
field presentation (3) we present the polarization and the population inversion in
the form [5]:

P = Re
(
i
(
P+

z eih̄z + P−z e−ih̄z + P+
x eih̄x + P−x e−ih̄x

)
eiω0t

)
,

ρ = ρ0 + Re
(
ρ2ze2ih̄z + ρ2xe2ih̄x + ρz−xe2ih̄(z−x) + ρz+xe2ih̄(z+x)

)
, (3)

where P±x,z, ρ0, ρ2z, ρ2x, ρz−x, ρz+x, are the slowly varying amplitudes.
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The process of amplification of these waves in the active medium and their
mutual scattering on the Bragg corrugation and nonlinear corrugation emerging
from the modulation of inversion can be described by the averaged equations(

∓ ∂

∂Z
+

∂

∂τ

)
Â±z + i

(
Â+

x + Â−x
)

= P̂±z ,

(
∓ ∂

∂X
+

∂

∂τ

)
Â±x + i

(
Â+

z + Â−z
)

= P̂±x ,

∂ρ̂0

∂τ
+

ρ̂0 − 1
T̂1
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Â+

z P̂+∗
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)
,
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z

)
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)
, (4)

where ρe is an equilibrium value of population inversion, µ is dipole moment,
T1 and T2 are the relaxation times, ω0 is the transition frequency ρ̂ = ρ/ρe,
P̂±x,z = P±x,zα(ρeh̄ω3

0/2π)−1/2, Â±x,z = A±x,zω
2
0(ρeh̄ω3

0/2π)−1/2/2πc, T̂1,2 = αω0T1,2,
X = αω0x/c, Z = αω0z/c, τ = αω0t. Here α = b0ω0εE

2
0(d/2)/πhc

∫∞
−∞E2

0(y)dy

is the coupling coefficient of partial waves in the case of chessboard corrugation, b0

is the corrugation amplitude, d is the mean width of the dielectric layer, E0(d/2)
is the unperturbed mode amplitude on the corrugation (see (2)), ε is the dielectric
constant. Obtaining (5) we used the balance approximation assuming that trans-
verse relaxation time T2 is small comparing to other time values, expressing for
example P̂+

z components of polarization as

P̂+
z = βT̂2

(
2Â+

z ρ̂0 + Â−z ρ̂2z + Â+
x ρ̂z−x + Â−x ρ̂z+x

)
, (5)

where β = πρe|µ|2/α2h̄ω3
0 is normalized density of active atoms, T̂2 = αω0T2.

3. Results and discussion

According to [3, 4] the 2D Bragg resonator possesses high selectivity over
both the longitudinal and the transverse indices. This selectivity originates from
output of radiation not only in the longitudinal ±z directions (similar to 1D Bragg
resonators), but additionally in the transverse ±x directions. Peculiarity of the
2D Bragg structures is the existence of the high-Q eigenmodes inside the Bragg
resonance zone without any defects of the periodicity. The highest Q-factor is
achieved at the precise Bragg frequency. Self-excitation conditions of that funda-
mental mode can be put in a form: 4βT̂2l

2
zlx/π2 = 1.

Nonlinear stage of the oscillation was studied by means of numerical simu-
lation of Eq. (5). Temporal dependences of total energy of electromagnetic field
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Fig. 2. Temporal dependences of total energy of electromagnetic field at different values

of the excess over the threshold.

Fig. 3. The distributions of amplitudes of partial waves in the stationary regime of

oscillations.

at different values of the excess over the threshold are presented in Fig. 2, which
illustrates the process of establishment of stationary regime of oscillations. In
Fig. 3 the distributions of amplitudes of partial waves in this regime are depicted
at Lz = 5, Lx = 2.5, βT̂2 = 0.1, T̂1 = 1. Spectra of the signal on the initial
(linear) stage of transient process and in the steady-state regime of oscillations are
presented in Fig. 4. In this case besides the fundamental mode the threshold of
self-excitation is exceeded for some other modes, so in the initial stage (Fig. 4a)
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Fig. 4. Spectra of the signal on the initial (linear) stage of transient process (a) and in

the steady-state regime of oscillations (b).

spectral maxima corresponding to the frequencies of these modes can be seen.
However, nonlinear mode competition leads to the establishment of steady-state
single-frequency (Fig. 4b) regime with a frequency and partial waves amplitudes
distribution similar to those of the fundamental mode of the Bragg resonator (see
[1, 2]). Thus, simulation demonstrates the possibility of using the 2D Bragg struc-
tures for spatial synchronization of radiation of extended active medium of planar
geometry with large Fresnel parameter.
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