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Real photonic crystals suffer from imperfections due to inaccuracies in

manufacture. Therefore these imperfections have to be taken into account

as disorder in the lattice structure when the properties of photonic crystals

are simulated. Here, in particular the effect of positional and radial disorder

on the density-of-states and on the mode structure of electromagnetic waves

in a photonic crystal is studied for 2D systems.

PACS numbers: 42.70.Qs

1. Introduction

Photonic crystals (PhCs) are structures with a (nominally) exactly periodic
variation of the dielectric constant or the permeability. There is a similarity be-
tween the laws governing the propagation of electromagnetic waves in a PhC and
the laws for the motion of electrons in the periodic potential of a lattice of atoms.
In both cases the Bloch theorem holds and the wave function can be described as
a Bloch function: the product of a lattice periodic function unk(r) and a slowler
varying oscillatory function exp(ikr).

When PhCs are manufactured, e.g. by etching a two-dimensional array of
cylindrical holes into a semiconductor, deviations from the ideal periodicity can
occur [1]. The positions of the axes of the cylinders will deviate from the lattice
positions (positional disorder). The radii of the cross-sections of the cylinders will
vary, e.g., due to slight variations in the etching rate (radial or size disorder). Tak-
ing into account the three-dimensionality of the structure, positional and radial
disorder may occur also along each hole. The cross-section of the hole, e.g., may
decrease with increasing distance from the semiconductor surface. Similar varia-
tions occur for arrays of free-standing rods produced by etching. For self-assembled
structures, stacking faults [2] or the occurrence of a polycrystalline grain structure
[3] are further possible sources of disorder.
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In this work we study 2D PhCs and concentrate on positional and size dis-
order on two-dimensional arrays of rods (dielectric constant higher than in the
background). Such an array has been used [4, 5] to investigate negative refraction.

2. Modelling the disorder

In this work as a starting point a two-dimensional array of rods arranged on
a square lattice (see left diagram of Fig. 1) is chosen. The ratio of rod radius r

to lattice constant a is chosen to be r/a = 0.329. A dielectric constant of ε = 13
is assumed for rods of the square lattice. The rods are surrounded by air (ε = 1).
The band structure of this system is shown in Fig. 2.

The positional disorder of a 2D PhC can be described as a random shift
(δx,i, δy,i) of each rod (index i see moddle diagram of Fig. 1). This shift is limited
by the parameter δp, δx,i < δp, δy,i < δp. The random values δx,i and δy,i are

Fig. 1. Positional and size disorder: left — perfect crystal, middle — crystal subject

to positional disorder, right — size disorder. The intersections of the lines indicate the

centers of the rods in the perfect crystal. The square indicates the unit cell of the perfect

PhC.

Fig. 2. Band structure for a perfect (δp = δr = 0) square lattice of rods. r/a = 0.329,

ε = 13 (TM polarization). After Ref. [6].



Effect of Disorder on the Electromagnetic Properties . . . 771

Fig. 3. Crystal constructed from disordered supercells. The dashed lines indicate the

boundaries of the repeated supercells.

uniformly distributed. In this way δp controls the amount of disorder — for δp = 0
the PhC is perfectly ordered. Radial disorder is described in a similar way as a
variation of the radius of the i-th rod ri = r+δr,i, with δr,i < δr (see righr diagram
of Fig. 1).

For an (ideal) PhC a number of mathematical methods are available. The
band structure of the PhC can be calculated, e.g., using the plane wave expan-
sion (PWE) method [7]. Strictly speaking, in the presence of disorder, the Bloch
theorem is no longer valid. However, in order to be still able to employ the meth-
ods an approximation of the disordered crystal has to be used. This is done by
extracting a supercell [8] consisting of N rows and N columns of unit cells from
the disordered crystal and using this supercell as the new unit cell for a PhC (see
Fig. 3). As the area of the unit cell in real space is increased by a factor of N2 the
area of the corresponding Brillouin zone decreases by N−2. The band structure is
then calculated for this PhC for Nk different wave vectors. To avoid artefacts, e.g.
by choosing symmetrical points, these wave vectors are chosen at random from
positions in the supercell Brillouin zone.

To determine the density-of-states the frequency region of interest is divided
into intervals of equal width. Then, for each interval the number of eigenstates
with frequencies in this interval is counted, determining the denstty-of-states up
to a constant factor, i.e. in arbitrary units (a.u.). As shown in Fig. 4 increasing
the number of wave vectors beyond Nk = 50 does not increase the precision in
the determination of the density of states significantly. Calculation times increase
very fast with increasing N . Therefore, N = 10 and Nk = 50 were chosen for the
determination of the density-of-states.
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Fig. 4. Comparison of the calculated density-of-states using different values of Nk (the

number of wave vectors) for a 10×10 supercell and TM polarization, (solid — Nk = 150,

dashed — Nk = 50, short dashed — Nk = 37, dotted — Nk = 18). Positional disorder

δ = 0.1a, TM polarization.

The states of the electromagnetic wave in a PhC scale with the lattice con-
stant a. If a is increased by some factor κ the corresponding states in the magnified
PhC have frequencies reduced by a factor of 1/κ. Therefore results will be given in
terms of the reduced frequency φ = fa/c and can be scaled to the lattice constant
chosen.

3. Results and discussion
3.1. Density-of-states

The effect of positional disorder on the density-of-states is shown in Fig. 5,
the effect of radial disorder is shown in Fig. 6. In both cases as the degree of
disorder is increased the width of the gap is narrowed. The second gap is more
sensitive to disorder and shows this narrowing effect earlier. This may be explained
by the shorter wave length of the electromagnetic waves in the air and in the
rods for frequencies in the second gap than in the first gap. Therefore, at higher
frequencies, the sensitivity to variations in the spatial dimensions is increased.
This is true also for the higher bands, but is more conspicuous for the second gap.

As the disorder is increased, not only is the gap narrowed, but also states
within the gap appear. Again the second gap is more sensitive to disorder.

Qualitatively, this happens both for positional and radial disorder. However,
smaller values of the radial disorder parameter δr compared to the corresponding
values of δp for positional disorder are sufficient for these effects. This difference
is more pronounced for stronger disorder.

3.2. Modes structure

To study the effect of positional and radial disorder, respectively, in more
detail, the electromagnetic modes, the eigenstates of the electromagnetic field in
the supercell PhC are examined. Since less states have to be determined from
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Fig. 5. Density-of-states vs. reduced frequency φ = fa/c for the square lattice of rods

for the TM polarisation in the region around the first gap (inset: full plot up to the edge

of the third band) for positional disorder. Bold — no disorder, dashed — δp = 0.05a,

short dashed curve — δp = 0.1a.

Fig. 6. Density-of-states vs. reduced frequency φ = fa/c for the square lattice of rods

for the TM polarisation for the region around the first gap (inset — full plot up to the

edge of the third band) for radial disorder. Solid curve — no disorder. Dotted curve —

δr = 0.02a. Dashed curve — δr = 0.05a.
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the calculation it is feasible to increase the size of the supercell in this case to
20 × 20. For modes with frequencies in a band of the photonic band structure a
direct comparison with the mode closest in frequency of the supercell with δp = 0
and δr = 0 is possible. For positional disorder (δp = 0.1a) and a reduced frequency
of φ = 0.212 this is the mode shown in Fig. 7 in the top-right diagram, for radial
disorder (δr = 0.05a) the mode is shown in the left diagram of Fig. 8. The corre-
sponding mode in the absence of disorder is shown at the top left in Fig. 7. As
a consequence of frequency degeneracy this mode appears as a diamond pattern
due to a superposition of two Bloch waves. This pattern, although deformed, is
also seen in the mode of the PhC with positional disorder — the degeneracy is not
broken by the random disorder. In the case of radial disorder the pattern is even
stronger deformed and weakly recognizable.

Fig. 7. Distribution of the electrical field for TM polarized electromagnetic eigenstates

in the perfect PhC and in a PhC with positional disorder δp = 0.1a. Top left diagram:

mode of the perfect δp = 0 PhC for a frequency in the lowest band. The reduced

frequency is φ = fa/c = 0.212. Modes of electromagnetic eigenstates in the disordered

(δp = 0.1a) PhC. Top right diagram: φ = 0.212 (as for top left). Bottom left diagram:

φ = 0.264, i.e., at the lower edge of the second band (in the frequency region of the first

gap of the perfect PhC). Bottom right diagram: φ = 0.253, in first band gap near the

second band. After Ref. [6].
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Fig. 8. Distribution of the electrical field for TM polarized electromagnetic eigenstates

in a PhC with radial disorder δr = 0.05a. Top left diagram — φ = 0.212, in the lowest

band. Top left diagram — φ = 0.216, at the upper edge of the lowest band (in the

frequency region of the first gap of the perfect PhC). Bottom diagram — φ = 0.251, in

first band gap near the second band.

The lower-left diagram of Fig. 7 and the top-right diagram of Fig. 8 depict
modes for frequencies in the “band-tail” regions of the disordered PhC, frequencies
which lie in the gap regions for the corresponding PhC without disorder. These
modes are extended over the supercell but show no Bloch wave character.

A third category of states is formed by the gap states isolated in frequency
within the gap regions (as opposed to the disorder-broadened bands). The modes
from this category are shown in the bottom-right of Fig. 7 (positional disorder) and
at the bottom of Fig. 8. These states are not extended over the whole supercell,
but are occupying only part of it.

4. Conclusions

The effect of disorder acting on a PhC to the band structure of electro-
magnetic waves is a narrowing of the photonic band gaps and additionally the
appearance of states within these gaps. The states with frequencies within the
photonic bands — the band states — even in the absence of disorder are distorted
but retain their Bloch wave character. This character is lost for the tail states —
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states with frequencies which lie in photonic bands only due to the disorder induced
gap narrowing. Nevertheless, the tail states are still extended. A third category
of states — gap states — is induced within the narrowed gaps. These states are
localized within limited regions of the PhC. Positional and radial disorder both
show this effect. The difference is quantitative — the distance of the displacement
(determined by positional disorder parameter δp) has to be relatively far larger
than the change in size (radial disorder parameter δr) to have a comparable effect.
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