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Localized waves in disordered left-handed materials are studied using a

generalized coupled-dipole model. Resonances in an open system consisting

of randomly distributed electric and magnetic dipoles are investigated. A

new type of long-lived resonance modes localized at the boundary of the

system is found. They resemble evanescent waves responsible for a superfo-

cusing phenomenon by a left-handed lens.
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1. Introduction

Recently artificially built materials (metamaterials) with negative electric
and magnetic permeability have attracted much attention (see [1] and references
therein). The directions of phase and energy propagation in these so-called left-
-handed media are opposite. Thus the wave vector and the electric and magnetic
fields vectors form a left-handed set. The refraction index in such media is negative
and a wave incident on a left-handed medium is refracted in an opposite direction.

Usually left-handed materials are built of artificial electric and magnetic
resonators with specially tailored frequency response. The system of electric res-
onators (wires) and magnetic resonators (split ring resonators) forms a periodic
lattice. Such a metamaterial works as a left-handed medium for electromagnetic
waves with frequencies from a narrow window only.

In this paper we investigate a left-handed medium built of randomly placed
scattering elements. A motivation behind such a random arrangement of scatterers
is that it may make the properties of the medium less sensitive on the properties
of the individual scatterers. This can result in a wider frequency window in which
left-handed medium works.

This idea is based on the observations from solid state physics. In crystalline
solids a narrow forbidden band gap exists. No propagating modes exist in this
energy region. By introducing disorder into the system the gap becomes wider
but it is no longer a strictly forbidden gap. Some propagating modes are allowed.
However, for sufficiently large disorder no propagating modes are allowed again
in an energy band given by the Ioffe–Regel criterion. Instead a band of localized
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states appears. The width of this band is usually much larger than the width of
the original forbidden band gap.

Localized waves are orthogonal to all propagating waves (plane waves).
Thus they have to be composed of evanescent waves only [2]. Recently focusing
of electromagnetic waves by left-handed materials has attracted much attention
[3–6]. It was suggested that “evanescent” waves in such a medium are in fact not
evanescent at all: instead of decaying, their amplitude should actually grow up
as they pass through a left-handed material. This unusual behavior of evanescent
waves may modify the properties of localized waves. Thus a study of the Anderson
localization in disordered left-handed materials seems interesting.

This paper is organized as follows. In Sect. 2 the discrete dipole model of
left-handed media is introduced. In Sect. 3 it is used to model a left-handed lens.
It is shown that a random collection of dipoles with suitably chosen scattering
properties does act as a left-handed medium. The disordered system studied in
this section is in the localization regime as given by the Ioffe–Regel criterion.
Long-lived resonance states in such a system may form a band of localized waves
in the limit of an infinite system. Example localized resonance modes are studied
in Sect. 4. We finish with some conclusions in Sect. 5.

2. Discrete-dipole model of left-handed media

The left-handed medium under consideration is modeled using a general-
ized discrete-dipole approach. In a standard discrete-dipole approach a dielectric
medium is modeled by a system of interacting electric dipoles [7]. A generalization
employed in this paper consists of simultaneous consideration of both electric and
magnetic dipoles. This is necessary to model a left-handed medium.

For simplicity the electric and magnetic dipoles will be placed at the same
points. Thus the polarization P and magnetization M of the medium read as

P (r) =
∑

a

paδ(r − ra), (1)

M(r) =
∑

a

maδ(r − ra). (2)

The positions of the dipoles ra are the same in both equations.
In the standard discrete dipole approach an electric moment pa of the a-th

dipole is coupled to the electric field E′ by a microscopic electric polarizability α:

pa =
α

1− 2
3 ik3α

E′(ra), (3)

where k is the wave number in vacuum. The microscopic electric polarizability
α is related to the macroscopic dielectric permeability ε by the Clausius–Mosotti
formula

α =
3

4πn

ε− 1
ε + 1

, (4)

where n is the density of the dipoles. Equation (4) is valid if the density of the
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dipoles per wavelength cubed is large enough. In the limit of an infinite density the
discrete system of dipoles (1) is equivalent to a homogeneous dielectric medium.

According to the Clausius–Mosotti formula (4) the product of the density and
polarizability is a constant. Thus in the limit of large density of dipoles the mean
free path l ∝ 1/(nα2) becomes much larger than the wavelength. Therefore, the
Ioffe–Regel criterion is no longer fulfilled and the system is out of localized regime.
In our calculations we will be interested in intermediate densities: sufficiently large
to be able to reasonably model a homogeneous dielectric and sufficiently low to
have the mean free path lower than the wavelength.

In our model Eqs. (3) and (4) are supplemented by analogous relations for
magnetic dipole moment

ma =
β

1− 2
3 ik3β

H ′(ra) (5)

and microscopic magnetic polarizability and macroscopic magnetic permeability

β =
3

4πn

µ− 1
µ + 1

. (6)

The electric field acting on the electric moment of the a-th dipole from Eq. (3)
is the sum of the incident field and waves scattered by all other dipoles

E′(ra) = E0(ra) +
∑

a 6=b

Eb(ra). (7)

Similarly the magnetic field acting on the magnetic moment of the a-th dipole is
given by

H ′(ra) = H0(ra) +
∑

a 6=b

Hb(ra). (8)

Electric and magnetic fields radiated by an a-th dipole can be expressed in terms
of Green’s tensors Ĝ1 and Ĝ2 (for explicit forms of these tensors see, e.g., [8]):

Ea(r) = Ĝ1(r − ra) · pa − Ĝ2(r − ra) ·ma, (9)

Ha(r) = Ĝ2(r − ra) · pa + Ĝ1(r − ra) ·ma. (10)
It is seen from Eqs. (9) that the electric field radiated by magnetic dipoles acts
on electric dipoles, and the magnetic field radiated by electric dipoles acts on
magnetic dipoles. Of course, the dipoles of the same kind keep interacting with
one another by a respective field as well.

3. New type of lens

A slab made of a left-handed material can act as a new type of lens [3]. A
particular interest has been paid to the case of

ε = −1, µ = −1, (11)
where there is no reflection at the slab boundaries, only refraction.

We investigate this situation by simulating numerically a left-handed lens
built up of a collection of 1000 dipoles. Their random distribution is depicted in
Fig. 1. The dipoles form a slab of thickness d = 1 wavelength. The density of the
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Fig. 1. Flat cylinder made of randomly distributed dipoles; side view (left) and bottom

view (right). All dimensions are scaled in wavelength.

Fig. 2. Image of a point dipole formed by the left-handed lens from Fig. 1.
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dipoles is n = 10 dipoles per wavelength cubed. Their polarizabilities α and β are
calculated according to Eqs. (4) and (6) in order to reproduce Eq. (11).

The slab built of passive dipoles is illuminated by an additional active electric
dipole placed at point x0 = 0, y0 = 0, z0 = −1. Its dipole moment p0 is given and
it is the source of fields E0 and H0 from Eqs. (7) and (8).

This field calculated according to Eqs. (9) at the positions of the remaining
dipoles (E0(ra) and H0(ra)) is substituted into the system of linear Eqs. (3), (5),
(7)–(9), which gives us the remaining dipole moments pa and ma (a = 1, . . . , 1000).

Then all the dipole moments pa and ma (a = 0, . . . , 1000) are substituted
again into Eqs. (9) to calculate the field on the screen. The screen is a planar
surface parallel to the bottom of the cylinder from Fig. 1 and described by the
equation z = zs. The equation of a left-handed lens [3] gives

zs − z0 = d. (12)
The time averaged field energy stream through the surface of the screen

(given by the z-th component of the Poynting vector) is depicted in Fig. 2. We see
that the image of the point source p0 is indeed visible on the screen. This proves
that the system of dipoles from Fig. 1 indeed acts as a left-handed lens.

4. Resonances in a random system of dipoles

According to theory of disordered media in the limit of an infinite system a
band of localized modes may appear. This so-called Anderson localization occurs
if the medium is sufficiently disordered. A common criterion for critical disorder
was given by Ioffe and Regel, i.e., the mean free path l in the system needs to be
smaller than the wavelength

kl < 1. (13)
For the random collection of dipoles from Sect. 3 we have kl ≈ 0.66. Thus the Ioffe–
Regel criterion (13) is satisfied and this disordered system is in the localization
regime. In an open system localized modes become long-lived resonances.

A way of dealing with those resonances is to look for resonance poles in the
complex frequency plane. Approximate frequencies and widths of the resonances
can be obtained by diagonalizing the matrix of the system of linear Eqs. (3),
(5), (7)–(9). In order to be able to interpret the eigenvalues as the resonance poles
we need to introduce a model of scattering of a single dipole [2, 9].

Let us consider a simple scatterer with one internal resonance. The scattering
cross-section has a form

k2σ = 12π
γ2
0

(ω − ω0)2 + γ2
0

. (14)

To model this so-called Breit–Wigner scatterer the polarizability α from Eq. (3)
needs to be defined as follows:

2
3
k3α = − γ0

ω − ω0
. (15)

The same holds for β from Eq. (5).
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Let us note that the scattering cross-section is twice larger than a cross-
-section corresponding to electrical dipole only. Thus in a system of electric and
magnetic dipoles localization should happen at density twice as low than reported
previously for a system of electrical dipoles [10].

It is a common believe that resonance modes corresponding to long-lived
resonances are well localized inside the system. Thus the adding of additional
dipoles at a system boundary should not affect their shape significantly and in
the limit of the infinite system they will become localized waves. As will be seen
from the subsequent considerations it does not need to be the case for left-handed
media.

Fig. 3. Field energy density at the dipoles versus the dipole positions projected on the

xy plane. Six dipoles are excited in this mode.

Having solved the relevant equations we can search for the long-lived res-
onances. It happens that the longest-lived one is associated with a proximity
resonance between pair of dipoles close to each other (see, e.g., [9]). Surprisingly
enough, after eliminating all such cases, there still are interesting very long-lived
resonances created by several dipoles. To prove it is not a proximity resonance we
provide Fig. 3 showing the field energy density at the dipole positions Wa versus
the dipole positions ra:

Wa = |E′(ra)|2 + |H ′(ra)|2. (16)
It is clearly seen that several dipoles are excited.

In Fig. 4 we show a smoothed surface plot corresponding to the above dis-
crete function. It is composed of evanescent modes and is evidently well localized
but what is very interesting it is located (in one dimension) at the surface of our
lens! We find this observation very exciting and plan to pursuit further investi-
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Fig. 4. Surface plot corresponding to Fig. 3.

gations along these lines. Here let us only remark that despite being composed
of evanescent waves it does couple to the field radiated by our source dipole. The
reason is actually very simple: source dipole is close enough to the lens to make
also its near field essential.

The numbers visible in Fig. 4 describe the width and frequency of this reso-
nance mode

γ − γ0

γ0
= −0.98, (17)

ω − ω0

γ0
= 2.84. (18)

Thus the width of this resonance γ is 200 smaller than the width of the single
scatterer resonance γ0.
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5. Brief summary

A generalized coupled-dipole model, considering both electric and magnetic
dipoles, has been developed and applied to study localized modes in left-handed
media. Density of the dipoles is such that the model well approximates a contin-
uous left-handed material and, simultaneously, the Ioffe–Regel criterion for onset
of the Anderson localization is satisfied. We have discovered an interesting phe-
nomenon of a new type of collective localized long-lived resonances (not related to
proximity resonances) located close to the boundary of the medium. It is appar-
ently not the case for ordinary disordered dielectric media. There is plenty of such
modes but if they form a band of localized waves with growing size of the medium
is an open question. This nontrivial observation will be explored in more detail in
a forthcoming paper.
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