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1. Introduction

The aim of this paper is to present the derivation of orthonormal sets of sub-
strate and guided modes in the effective resonator model of a dielectric multilayer
structure, described in [1]. Calculations that can be found here are a continuation
of [2], where they have been conducted for radiation modes, therefore, the adopted
notation, as well as definitions, are the same as therein.

In the effective resonator model, a plane wave emitted by a source located
inside one of the layers of the structure is considered. The layer is treated as
a resonant cavity, with reflection coefficients of its right and left boundaries rR

and rL (which depend on the wave vector k and polarization ε of the plane wave).
Distributions of field can then be found by summation of series of reflected plane
waves. In particular, in the considered layer, the electromagnetic field is a super-
position of two plane waves: one with wave vector k, and the second, which could
be called reflected, with wave vector k∗:

k∗ = kxex + kyey − kzez (1)
(it is assumed that the z axis is perpendicular to the boundaries of the layer) and
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the relation between the amplitude of the reflected plane wave and the emitted
one is given by the function

ξε(k) =
r∗R(1− |rL|2)e−2ikzLz + rL

(
1− |rR|2

)

1− |rLrR|2 (2)

with Lz being the width of the layer containing the source of radiation.
Orthonormal sets of substrate and guided modes fkε, obeying∫

d3rn2(r)f∗qλ(r)fkε(r) = δελδ(k − q), (3)

can be constructed in the same way as they have been obtained in the case of
radiation modes in [2]. Starting with non-orthonormal modes ψkε, after calculation
of a similar integral, they can be related to the orthonormal modes fkε by their
linear combinations, forming a set of linear equations, which can be easily solved.
Normalization of magnetic field distributions fH

kε is then found as∫
d3rn2(r)

[
fH

qλ(r)
]∗

fH
kε(r) =

ε0

µ0

∫
d3rn2(r)f∗q(−λ)(r)fk(−ε)(r), (4)

where (–TE) = TM and (–TM) = TE.
For the non-orthonormal modes∫

d3rn2(r)ψ∗
qλ(r)ψkε(r) = 4π2ρε(k)ρε(q)

×δ(kx − qx)δ(ky − qy)δελ

∫ ∞

−∞
dzn2(z)φ∗qε(z)φkε(z). (5)

Because of the delta functions, the integral over z on the right-hand side is to be
evaluated for qx = kx and qy = ky. Using the explicit expressions for φkε the
integral becomes

∫ ∞

−∞
dzn2(z)φ∗qε(z)φkε(z) =

NR∑

j=−NL

n2
(j)

×
∫

(j)

dζ
[
ujqεeq(j)ε exp(iq(j)

z ζ) + vjq∗εeq
(j)
∗ ε

exp(−iq(j)
z ζ)

]∗

×
[
ujkεek(j)ε exp(ik(j)

z ζ) + vjk∗εek
(j)
∗ ε

exp(−ik(j)
z ζ)

]
, (6)

where (j) by the integral sign indicates the limits of integration: for j = −NL

from −∞ to 0, for j = NR from 0 to ∞, and for the remaining layers from 0
to L

(j)
z .

2. Substrate modes

A solution of wave equation is a substrate mode, if it is evanescent in exactly
one of semi-infinite regions j = −NL or j = NR. Without loss of generality it can
be assumed that n(L) > n(R). A substrate mode is then evanescent in the region
j = NR (for subscripts and superscripts in brackets a shortened notation R ≡ NR

and L ≡ −NL will be used). The z components of the wave vectors k(R) and q(R)

in this region are then
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k(R)
z = iκz, q(R)

z = iηz, (7)
where κz, ηz > 0. As shown in Appendix, in this case total reflection occurs, and
the reflection coefficient of the right boundary is

rR = eiϕR , (8)
where ϕR denotes its phase. In the region j = −NL substrate modes are superpo-
sitions of plane waves with k

(L)
z , q

(L)
z ∈ R and |rL| < 1. In this case, the coupling

function (2) is

ξε(k) = exp(−iϕR) exp(−2ikzLz), (9)
therefore the coefficient

vRkε = 0. (10)
For this reason, the integral over the j = NR region on the right-hand side of (6)
is ∫

(R)

dζu∗RqεuRkεe
∗
q(R)εek(R)ε exp(−(κz + ηz)ζ)

= u∗RqεuRkεe
∗
q(R)εek(R)ε

exp(−(κz + ηz)ζ)
−(κz + ηz)

∣∣∣∣
∞

0

. (11)

The value of the above expression in the upper limit is 0, and, as it has been shown
in [2], the term resulting from the lower limit cancels out with the term resulting
from the upper limit in the region j = NR − 1. The integral (6) for substrate
modes is very similar to the one obtained for two radiation modes

∫ ∞

−∞
dzn2(z)φ∗qε(z)φkε(z) = in2

(L) lim
ζ→∞

[
e∗q(L)εek(L)ε

×
u∗LqεuLkε exp

(
−i

(
k

(L)
z − q

(L)
z

)
ζ
)
− vLqεv

∗
Lkε exp

(
i
(
k

(L)
z − q

(L)
z

)
ζ
)

k
(L)
z − q

(L)
z

+e∗
q
(L)
∗ ε

ek(L)ε

×
vLqεuLkε exp

(
−i

(
k

(L)
z + q

(L)
z

)
ζ
)
− u∗Lqεv

∗
Lkε exp

(
i
(
k

(L)
z + q

(L)
z

)
ζ
)

k
(L)
z + q

(L)
z

]
(12)

and, after identifying the delta functions, one obtains
∫ ∞

−∞
dzn2(z)φ∗qε(z)φkε(z) = n2

(0)

∣∣∣∣∣
k

(L)
z

kz

∣∣∣∣∣

×
[

(|uLkε|2 + |vLkε|2
)
δ(kz − qz) + 2uLkεv

∗
Lkεδ(kz + qz)

]
. (13)

The integral (5) for substrate modes can then be written as∫
d3rn2(r)ψ∗

qλ(r)ψkε(r) = ρ2
ε(k)δελ

[
Fkεδ(k − q) + F̃kεδ(k − q∗)

]
, (14)

where
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Fkε = 4π3n2
(0)

∣∣∣∣∣
k

(L)
z

kz

∣∣∣∣∣
(|uLkε|2 + |vLkε|2

)
, (15)

F̃kε = 8π3n2
(0)

∣∣∣∣∣
k

(L)
z

kz

∣∣∣∣∣ uLkεv
∗
Lkε. (16)

3. Guided modes

Guided modes are the solutions of wave equation for which both k
(R)
z and

k
(L)
z are imaginary. In this case, total reflections of the emitted plane wave occur on

both boundaries of the layer j = 0 and the reflection coefficients of the boundaries
are

rR = eiϕR , rL = eiϕL (17)
with ϕR and ϕL being their phases. The mode spectrum (see [3]) is in this case

ρε(k) = lim
|r|→1

1− |r|4
1 + |r|4 − 2|r|2 cos(ϕtot)

=

{
∞, if cos(ϕtot) = 1,

0, otherwise,
(18)

where the total phase ϕtot is given by

ϕtot = ϕR + ϕL + 2kzLz. (19)
This corresponds to the well-known fact that guided modes do not exist for every
possible wave vectors — with the frequency kept constant they form a discrete
set. The coupling function (2) in case of a guided mode is expressed as

ξε(k) =
exp(−iϕR) exp(−2ikzLz) + exp(iϕL)

2

= exp(−iϕR) exp(−2ikzLz) = exp(iϕL), (20)
therefore, for the reason explained in Appendix

vRkε = vLkε = 0. (21)
The integral over the j = NR region is again given by (11), and just like in the
case of substrate modes, it cancels out with another term. But, for guided modes,
the integral over the j = −NL region has the same form as (11), and it cancels
out the same way. This means that for guided modes (6) is equal to 0. However,
this conclusion does not apply to the case of equal wave vectors: q = k, for which
the integral (6):

∫ ∞

−∞
dzn2(z)φ∗kε(z)φkε(z) =

n2
L|uLkε|2
2

∣∣∣k(L)
z

∣∣∣
+

n2
R|uRkε|2
2

∣∣∣k(R)
z

∣∣∣
+

∑

−NL<j<NR

n2
(j)

×
{ [

|ujkε|2 exp
(
−Im

(
k(j)

z

)
L(j)

z

)
+ |vjkε|2 exp

(
Im

(
k(j)

z

)
L(j)

z

)]

×
sinh

(
Im

(
k

(j)
z

)
L

(j)
z

)

Im
(
k

(j)
z

)
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+2Re
[
ujkεvjkεe

∗
k
(j)
∗ ε

ek(j)ε exp
(
iRe

(
k(j)

z

)
L(j)

z

)] sin
(
Re

(
k

(j)
z

)
L

(j)
z

)

Re
(
k

(j)
z

)
}

(22)

can be easily calculated. Normalization of guided modes can be written in the
form of (14), where

Fkε =

{
4π2

∫∞
−∞ dzn2(z)φ∗kε(z)φkε(z), if ρε(k) 6= 0,

0, if ρε(k) = 0,
(23)

F̃kε = 0, (24)
because, for every existing guided mode, the mode spectrum in (14) is infinite
anyway. After a proper normalization the guided mode has a finite energy and,
though the use of a uniform notation is very convenient, this one can be a bit
confusing. In this case, it has to be remembered that the presence of the delta
function in the normalization integral is associated only with orthogonality of the
modes, and not with their energy, unlike the case of radiation or substrate modes.
If only a single guided mode is to be considered, then the delta function should be
simply removed.

4. Summary

This paper concludes the construction of effective resonator model of a di-
electric multilayer structure. The basis of the model has been presented in [1],
orthonormalization of radiation modes has been performed in [2], and orthonor-
malization of substrate and guided modes has been the subject of this paper. The
application of an orthonormalization procedure for each type of modes has been
shown separately, but it is an obvious observation that two modes of different types
are always orthogonal (it follows from the delta functions appearing in (14)). The
obtained results allow the use of the effective resonator model in construction of
models of various physical phenomena concerning interaction of light and matter
(e.g. spontaneous or stimulated emission) in a dielectric multilayer structure.

Appendix

Total reflection from a dielectric multilayer

Let us consider a plane wave in a dielectric medium with refractive index
n(0), next to a dielectric multilayer structure, built of N−1 layers, and a dielectric
medium with index of refraction n(N) < n(0) behind it. Without loss of generality,
the amplitude of the wave can be chosen to be 1. In this case there is also present
a reflected plane wave with amplitude r, which is the reflection coefficient. It is
a well-known fact that for the angle of incidence greater than the total reflection
angle
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θT = arcsin
n(N)

n(0)
(A.1)

the reflection coefficient has

|r| = 1. (A.2)
It can be very easily shown in the case of only two dielectric media. Using the
notation adopted in the effective resonator model [1, 2], the relation between the
incident, reflected and transmitted (with amplitude t) wave is

m1,0

(
1
r

)
=

(
t

0

)
. (A.3)

If the continuity condition matrix is written explicitly, then a very simple calcula-
tion leads to (A.2).

Let N be odd and every layer with even index j (i.e. j = 0, 2, . . . , N − 1)
have the refractive index n(0), for odd j the refractive index being n(j). For even j,
the relation between the amplitudes of waves in the j-th and (j + 2)-th layer is
given by the translation matrix Mj , because these layers have the same index of
refraction. Therefore, the matrix relating the amplitudes of waves in (N − 1)-th
layer and the dielectric with j = 0 is the product

mN−1,0 = MN−1
2

. . . M1M0. (A.4)
Diagonal and antidiagonal of a translation matrix contain complex numbers which
are their own conjugates and determinant of this matrix is unity

Mj =
(

D∗
j Bj

B∗
j Dj

)
, det(Mj) = |Dj |2 − |Bj |2 = 1. (A.5)

A product of two matrices with these properties also has the same properties.
Thus, matrix mN−1,0 can be written as

mN−1,0 =
(

D∗ B

B∗ D

)
. (A.6)

If the (N − 1)-th layer ends with a mirror with reflection coefficient r′, then the
relation between amplitudes of plane waves in this layer and the incident and
reflected plane wave in the j = 0 layer is(

aN−1

r′aN−1

)
=

(
D∗ B

B∗ D

)(
1
r

)
. (A.7)

Solving for r, one obtains

r =
D∗r′ −B∗

D −Br′
. (A.8)

For angles greater than θT |r′| = 1 and |r| = 1 as well. Indeed, if r′ = |r′|eiϕ′ :

r =
D∗|r′| exp

(
iϕ′

2

)
−B∗ exp

(
− iϕ′

2

)

D exp
(
− iϕ′

2

)
−B|r′| exp

(
iϕ′
2

) . (A.9)

If |r′| = 1 then the numerator is the complex conjugate of the nominator and
therefore |r| = 1.
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With this knowledge, a simple trick can be used to prove (A.2) for a random
composition of layers between the two media. So far, the discussed structure
has not been general. However, the widths of layers with fixed refractive indices
(i.e. with j = 2, 4, . . . , N − 1) can be set to 0, then the structure built of the
remaining layers has no more constraints, yet the obtained conclusion still holds
(if a “virtual” layer with width 0 is placed between any two layers, it does not
change the relation between the amplitudes in those layers). Therefore, |r| = 1 for
any dielectric multilayer structure if the angle of incidence is greater than θT.
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