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1. Introduction

The problem of electromagnetic field in a dielectric multilayer structure, in
particular radiation modes, has been already studied in other papers and books,
e.g. [1–4]. In these works, there has been adopted an approach, in which the elec-
tromagnetic field of a radiation mode is constructed as a superposition of two plane
waves incident on the structure from opposite directions. The relation between
the amplitudes of these waves is determined by the demand for the field to form
standing waves in the regions outside the structure in the direction perpendicular
to the layers, so that no power flow occurs in this direction. The requirement of
two sources for only one mode can be a bit confusing, and there is a problem with
this approach, when all the refractive indices become equal to 1: in this case the
solution should be just a plane wave, but with two sources radiating in opposite
directions it is impossible.

This inconvenience is not present in the effective resonator model. This
model is a tool, which has been proposed for modeling photonic crystals [5]. It is
based on a simple concept and has a clear physical interpretation. In the model,
the source of the radiation is assumed to be inside the structure, and the field
distributions are found by solving the boundary problem for only one source plane
wave. In [6] it has been shown how this model can be used to obtain electromag-
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netic field distributions of a one-dimensional photonic crystal. The model is not
bound by periodicity of the structure, and the results presented therein remain
valid in a general case of a dielectric multilayer structure. However, the obtained
field distributions are not orthogonal, and their scalar products are unknown. To
render the model fully complete, it is necessary to transform these distributions
into a set of orthonormal modes. In this paper, orthonormalization of radiation
modes is performed. This paper is organized as follows. The considered struc-
ture is introduced in Sect. 2 and Sect. 3 contains a brief description of notation.
The orthonormalization of electric field distributions is presented in Sect. 4, while
Sect. 5 is devoted to magnetic field in the structure. A few helpful formulae can
be found in the Appendix.

2. Definition of the structure

The considered dielectric multilayer structure (Fig. 1) is built of a finite
number of dielectric layers, with the j-th layer having width L

(j)
z and refractive

index n(j). The distribution of refractive index in the whole structure is therefore

n(r) = n(j)χj(z), (1)
where χj(z) is the characteristic function of the j-th layer, defined as:

χj(z) =

{
1, z ∈ j-th layer,

0, otherwise.
(2)

Magnetic permeability of all materials is assumed to be constant and equal to
magnetic permeability of vacuum µ0.

Fig. 1. A dielectric multilayer structure.

The layer, in which the source of radiation is located, has the index
j = 0. The semi-infinite regions on the “right” and “left” side of the structure
have j = NR and j = −NL, respectively, and they are considered to be layers of
the structure as well.

3. Adopted notation

In the paper, notation k∗ denotes the wave vector of “reflected” plane wave,
in the adopted coordinate system

k∗ = kxex + kyey − kzez. (3)
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k(j) is the wave vector of plane wave in the j-th layer (k(0) ≡ k):

k(j) = kxex + kyey + k(j)
z ez. (4)

The component of wave vector k, which is parallel to the interfaces between the
layers, is conserved, its length

k‖ =
√

k2
x + k2

y (5)

is the same in every layer. The perpendicular component k
(j)
z depends on the layer

k(j)
z = kz

√
1 +

n2
(j) − n2

(0)

c2k2
z

ω2
k. (6)

In case of negative expression under the square root, the sign of the root has to
be chosen so that the amplitude of the wave diminishes with the distance to the
source of radiation, i.e. the same as the sign of j. The angular frequency ωk is
constant for each k and given by

ω2
k =

c2(k(j))2

n2
(j)

=
c2k2

n2
(0)

. (7)

It follows from (6) that k
(j)
z is either real or purely imaginary. The well-

-known classification of modes, based on k
(−NL)
z and k

(NR)
z , is therefore:

1. Radiation modes — being of interest in this paper — for which both k
(−NL)
z

and k
(NR)
z are real.

2. Substrate modes — for which exactly one of k
(−NL)
z and k

(NR)
z is real.

3. Guided modes — for which both k
(−NL)
z and k

(NR)
z are purely imaginary.

Vector r(j) is used to denote position translated to the local coordinate
system of the j-th layer. In this system, coordinates x and y are the same as in
the global coordinate system, and the coordinate z(j) runs from 0 to L

(j)
z in the

same direction as the z axis of the global coordinate system. The exception is the
region j = −NL, in which z(−NL) runs from −∞ to 0.

ρε(k) is the so-called mode spectrum (see [5]), a function of wave vector k and
polarization ε, calculated for the layer containing the source of radiation. For the
presented calculations, the following properties of mode spectrum of the considered
structure are important: it does not depend on the sign of any component of k,
in particular

ρε(k) = ρε(k∗), (8)
and

ρε(k) > 0 for radiation modes. (9)

4. Electric field

Electric field in the structure is given by [6]:

E(r, t) =
∑

ε

∫
d3kAkε(t)ψkε(r), (10)
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where ψkε is the solution of Maxwell equations “generated” by a plane wave with
wave vector k and polarization ε. It can be explicitly written as

ψkε(r) = ρε(k)
NR∑

j=−NL

χj(z)

×
(
ujkεek(j)ε exp (ik(j)r(j)) + vjk∗εek

(j)
∗ ε

exp (ik(j)
∗ r(j))

)
, (11)

where ekε is the polarization versor. Coefficients ujkε and vjkε in the above expres-
sion relate the amplitudes of plane waves in layers of the structure (their definitions
have been recalled in Appendix). Equation (11) can be written in a more compact
form

ψkε(r) = ρε(k)eikxxeikyyφkε(z), (12)
where

φkε(z) =
NR∑

j=−NL

χj(z)

×
(
ujkεek(j)ε exp (ik(j)

z z(j)) + vjk∗εek
(j)
∗ ε

exp (−ik(j)
z z(j))

)
. (13)

Modes ψkε form an independent set which can be transformed into a set of or-
thonormal modes fkε. Modes fkε satisfy the same wave equation as ψkε and, as
pointed out in [7], their orthonormalization rule is∫

d3rn2(r)f∗qλ(r)fkε(r) = δελδ(k − q) (14)

(q and λ denote the wave vector and the polarization of a mode, respectively),
which allows a straightforward calculation of energy of electric field.

If a similar integral for modes ψkε was calculated, then the relation between
the two sets would be found easily. Using (12), the integral becomes∫

d3rn2(r)ψ∗
qλ(r)ψkε(r) = 4π2ρε(k)ρλ(q)

×δ(kx − qx)δ(ky − qy)
∫ ∞

−∞
dzn2(z)φ∗qλ(z)φkε(z), (15)

because the integrals over x and y lead to the delta functions. Their presence
makes the calculation of the remaining integral over z much easier — it is enough
to perform the integration for qx = kx and qy = ky, thus, consequently, also
q‖ = k‖. However, in this case both wave vectors k and q define the same plane of
incidence. Therefore, if one of the fields has polarization TE and the second field
has polarization TM, the first is perpendicular to the plane of incidence, while the
second lies within the plane of incidence, which means that they are perpendicular
to each other and their scalar product is always zero. For this reason, integral (15)
can be simplified∫

d3rn2(r)ψ∗
qλ(r)ψkε(r) = 4π2ρε(k)ρε(q)
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×δ(kx − qx)δ(ky − qy)δελ

∫ ∞

−∞
dzn2(z)φ∗qε(z)φkε(z). (16)

The integral over z can be explicitly written as
∫ ∞

−∞
dzn2(z)φ∗qε(z)φkε(z) =

NR∑

j=−NL

n2
(j)

×
∫

(j)

dζ
(
ujqεeq(j)ε exp(iq(j)

z ζ) + vjq∗εeq
(j)
∗ ε

exp(−iq(j)
z ζ)

)∗

×
(
ujkεek(j)ε exp(ik(j)

z ζ) + vjk∗εek
(j)
∗ ε

exp(−ik(j)
z ζ)

)
, (17)

where
∫
(j)

denotes integration in the local coordinate system of the j-th layer.
Coefficients ujkε and vjkε satisfy the following relations:

ujk∗ε = u∗jkε, vjk∗ε = v∗jkε, (18)
and it is very easy to check that

e∗q∗εek∗ε = e∗qεekε, e∗q∗εekε = e∗qεek∗ε (19)
(e.g. using the explicit formulae (A.1) and (A.2) from Appendix). Therefore, after
carrying out of the integrals, Eq. (17) becomes

∫ ∞

−∞
dzn2(z)φ∗qε(z)φkε(z) = −i

NR∑

j=−NL

n2
(j)

(
e∗q(j)εek(j)ε

×u∗jqεujkε exp(i(k(j)
z − q

(j)∗
z )ζ)− vjqεv

∗
jkε exp(−i(k(j)

z − q
(j)∗
z )ζ)

k
(j)
z − q

(j)∗
z

∣∣∣
∂(j)

+e∗
q
(j)
∗ ε

ek(j)ε

×vjqεujkε exp(i(k(j)
z + q

(j)∗
z )ζ)− u∗jqεv

∗
jkε exp (−i(k(j)

z + q
(j)∗
z )ζ)

k
(j)
z + q

(j)∗
z

∣∣∣
∂(j)

)
, (20)

where |∂(j) means the difference of values of the term at the j-th layer’s boundaries.
The term resulting from evaluation at the lower boundary of the (j + 1)-th layer
(which is ζ = 0) cancels out with the term resulting from evaluation at the upper
boundary of the j-th layer (L(j)

z for j > −NL and 0 for j = −NL). Indeed, using
relations (A.17) and (A.18) one obtains

u∗(j+1)qεu(j+1)kε − v(j+1)qεv
∗
(j+1)kε = 1

2

[(
k(j)

z /k(j+1)
z + q(j)∗

z /q(j+1)∗
z

)

×(u∗jqεujkε exp (i(k(j)
z − q(j)∗

z )L(j)
z )− vjqεv

∗
jkε exp (−i(k(j)

z − q(j)∗
z )L(j)

z ))

+
(
k(j)

z /k(j+1)
z − q(j)∗

z /q(j+1)∗
z

)

×(vjqεujkε exp (i(k(j)
z + q(j)∗

z )L(j)
z )− u∗jqεv

∗
jkε exp (−i(k(j)

z + q(j)∗
z )L(j)

z ))
]
,(21)
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v(j+1)qεu(j+1)kε − u∗(j+1)qεv
∗
(j+1)kε = 1

2

[(
k(j)

z /k(j+1)
z − q(j)∗

z /q(j+1)∗
z

)

×(u∗jqεujkε exp (i(k(j)
z − q(j)∗

z )L(j)
z )− vjqεv

∗
jkε exp (−i(k(j)

z − q(j)∗
z )L(j)

z ))

+
(
k(j)

z /k(j+1)
z + q(j)∗

z /q(j+1)∗
z

)

×(vjqεujkε exp (i(k(j)
z + q(j)∗

z )L(j)
z )− u∗jqεv

∗
jkε exp (−i(k(j)

z + q(j)∗
z )L(j)

z ))
]
(22)

and after a simple, but lengthy calculation (in which (A.5) is useful) it turns out
that the terms are equal, but they appear in (20) with opposite signs.

The remaining terms arise from the limits in ±∞. To make the formulae
more elegant, let R ≡ NR and L ≡ −NL. For radiation modes all the z components
in j = R and j = L regions are real: k

(R)
z , k

(L)
z , q

(R)
z , q

(L)
z ∈ R, and expression (20)

is then∫ ∞

−∞
dzn2(z)φ∗qε(z)φkε(z) = −i lim

ζ→∞

[
n2

(R)

(
e∗q(R)εek(R)ε

×u∗RqεuRkε exp (i(k(R)
z − q

(R)
z )ζ)− vRqεv

∗
Rkε exp (−i(k(R)

z − q
(R)
z )ζ)

k
(R)
z − q

(R)
z

+e∗
q
(R)
∗ ε

ek(R)ε

×vRqεuRkε exp (i(k(R)
z + q

(R)
z )ζ)− u∗Rqεv

∗
Rkε exp (−i(k(R)

z + q
(R)
z )ζ)

k
(R)
z + q

(R)
z

)

−n2
(L)

(
e∗q(L)εek(L)ε

×u∗LqεuLkε exp (−i(k(L)
z − q

(L)
z )ζ)− vLqεv

∗
Lkε exp (i(k(L)

z − q
(L)
z )ζ)

k
(L)
z − q

(L)
z

+e∗
q
(L)
∗ ε

ek(L)ε

×vLqεuLkε exp (−i(k(L)
z + q

(L)
z )ζ)− u∗Lqεv

∗
Lkε exp (i(k(L)

z + q
(L)
z )ζ)

k
(L)
z + q

(L)
z

)]
.(23)

An exponent can be split into a sum of cosine and sine functions, therefore

lim
ζ→∞

eikζ

k
= lim

ζ→∞
cos(kζ)

k
+ i lim

ζ→∞
sin(kζ)

k
. (24)

The term containing the cosine function can be omitted [1, 3], while the term with
the sine gives

lim
ζ→∞

sin(kζ)
k

= πδ(k). (25)

In the presence of the arising delta functions all the polarization versors in (23)
become either ek(R)ε or ek(L)ε, and all their scalar products become equal to 1.
The calculated integral is then
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∫ ∞

−∞
dzn2(z)φ∗qε(z)φkε(z) = π

{
n2

(R)

[
(|uRkε|2 + |vRkε|2)δ(k(R)

z − q(R)
z )

+2uRkεv
∗
Rkεδ(k

(R)
z + q(R)

z )
]
+ n2

(L)

[
(|uLkε|2 + |vLkε|2)δ(k(L)

z − q(L)
z )

+2uLkεv
∗
Lkεδ(k

(L)
z + q(L)

z )
]}

. (26)

Using the well-known property of the delta function

δ(f(x)) =
∑

i

δ(x− xi)
/ ∣∣∣∣

df

dx

∣∣∣∣ , xi : f(xi) = 0, (27)

one obtains

δ(k(j)
z ∓ q(j)

z ) =
n2

(0)

n2
(j)

∣∣∣∣∣
k

(j)
z

kz

∣∣∣∣∣ δ(kz ∓ qz). (28)

Finally∫ ∞

−∞
dzn2(z)φ∗qε(z)φkε(z)

= πn2
(0)

{∣∣∣∣∣
k

(R)
z

kz

∣∣∣∣∣
[(|uRkε|2 + |vRkε|2

)
δ(kz − qz) + 2uRkεv

∗
Rkεδ(kz + qz)

]

+

∣∣∣∣∣
k

(L)
z

kz

∣∣∣∣∣
[(|uLkε|2 + |vLkε|2

)
δ(kz − qz) + 2uLkεv

∗
Lkεδ(kz + qz)

]
}

. (29)

The obtained result lets to write the integral (15) as∫
d3rn2(r)ψ∗

qλ(r)ψkε(r) = ρ2
ε(k)δελ

[
Fkεδ(k − q) + F̃kεδ(k − q∗)

]
, (30)

where

Fkε = 4π3n2
(0)

∣∣∣k(R)
z

∣∣∣
(|uRkε|2 + |vRkε|2

)
+

∣∣∣k(L)
z

∣∣∣
(|uLkε|2 + |vLkε|2

)

|kz| , (31)

F̃kε = 8π3n2
(0)

∣∣∣k(R)
z

∣∣∣ uRkεv
∗
Rkε +

∣∣∣k(L)
z

∣∣∣ uLkεv
∗
Lkε

|kz| . (32)

The right hand side of (30) suggests that the relation between ψkε and fkε

has the form

ψkε(r) = rkε

(
fkε(r) + skεfk∗ε(r)

)
. (33)

The calculation of (30), with the use of (14), gives

rkε = ρε(k)

√
Fkε

1 + |skε|2 , (34)
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skε =





Fkε−
√

F 2
kε
−|F̃kε|2

F̃kε
, F̃kε 6= 0,

0, F̃kε = 0.
(35)

Hence, the orthonormal electric radiation modes are

fkε(r) =
1

rkε

ψkε(r)− skεψk∗ε(r)
1− |skε|2 (36)

or, written in a more explicit form

fkε(r) =
1

1− |skε|2

√
1 + |skε|2

Fkε

NR∑

j=−NL

χj(z)
[
(ujkε − skεvjkε)ek(j)ε

× exp (ik(j)r(j)) + (vjk∗ε − skεujk∗ε)ek
(j)
∗ ε

exp (ik(j)
∗ r(j))

]
. (37)

5. Magnetic field

In every layer of the considered structure, magnetic field is related to electric
field by the expression obtained from the Maxwell equations for a superposition
of two plane waves with the same frequency

ψH
kε(r) =

∇×ψkε(r)
iµ0ωk

. (38)

With the definition of polarization versors of magnetic field

eH
kε =

k × ekε

k
, (39)

the distribution of the field is given by

ψH
kε(r) =

ρε(k)
µ0c

NR∑

j=−NL

χj(z)n(j)

(
ujkεe

H
k(j)ε exp (ik(j)r(j))

+vjk∗εe
H

k
(j)
∗ ε

exp(ik(j)
∗ r(j))

)
. (40)

If the versors (39) are calculated with the use of (A.1) and (A.2), it turns out that

eH
kTE = −ekTM, (41)

eH
kTM = ekTE. (42)

Because refractive index is already incorporated in (40), it can be easily seen that
the integral, which arises by calculation of energy of magnetic field, is proportional
to already calculated integral for electric field∫

d3r
(
ψH

qλ(r)
)∗

ψH
kε(r) =

ε0

µ0

∫
d3rn2(r)ψ∗

q(−λ)(r)ψk(−ε)(r), (43)

where the notation (−ε) means “the other polarization”, i.e. (–TE) = TM and
(–TM) = TE. It is worth noting that because the above conclusion has been
reached by considering only fundamental relations between electric and magnetic
fields, (43) is valid not only for radiation modes, but for all modes of the structure.
A similar relation is satisfied by
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fH
kε(r) =

∇× fkε(r)
iµ0ωk

. (44)

Appendix
A few formulae and calculations

Explicit expressions for electric field polarization versors are

ekTE =
kyex − kxey

k‖
, (A.1)

ekTM =
−kxkzex − kykzey + k2

‖ez

|k|k‖
. (A.2)

For qx = kx and qy = ky:

e∗qTEekTE = 1, (A.3)

e∗qTMekTM =
kzq

∗
z + k2

‖
|k||q| (A.4)

and, from (7)
(
k(j)

z

)2

−
(
q(j)∗
z

)2

=
(
k(j)

z

)2

−
(
q(j)
z

)2

=
n2

(j)

c2

(
ω2

k − ω2
q

)
. (A.5)

The matrix mj,0, which, for j > 0, establishes the relation between amplitudes of
waves in the layer j = 0 (containing the radiation source) and in the j-th layer,
allows to define the coefficients [6]:

ujkε =
(

δεTE +
n(0)

n(j)
δεTM

) [(
mε

j,0(k)
)
11

+
(
mε

j,0(k)
)
12

ξ∗ε (k)
]
, (A.6)

vjkε =
(

δεTE +
n(0)

n(j)
δεTM

) [(
mε

j,0(k∗)
)
21

+ (mε
j,0(k∗))22ξε(k)

]
, (A.7)

where ξε(k) is a function defining the relation between waves propagating in op-
posite z directions. For j < 0 the relation is established by matrix wj,0

wj,0 = m−1
0,j (A.8)

(keeping in mind that for j < 0 an imaginary part of k
(j)
z is negative). Coefficients

ujkε and vjkε are in this case

ujkε =
(

δεTE +
n(0)

n(j)
δεTM

) [(
wε

j,0(k)
)
11

+
(
wε

j,0(k)
)
12

ξ∗ε (k)
]
, (A.9)

vjkε =
(

δεTE +
n(0)

n(j)
δεTM

) [(
wε

j,0(k∗)
)
21

+
(
wε

j,0(k∗)
)
22

ξε(k)
]
. (A.10)

In both these cases, if the matrix mj,0 is expressed simply by

mj,0 =
(

m11 m12

m21 m22

)
, (A.11)

then the definitions of ujkε and vjkε can be written as



504 A. Rudziński

(
ujkε

v∗jkε

)
=

(
m11 m12

m21 m22

)(
1

ξ∗ε (k)

)
(A.12)

for j > 0, and the same, with matrix mj,0 replaced by wj,0, for j < 0.
Matrix mj+1,j , which establishes the relation between waves in j-th and

(j + 1)-th layer, is given by

mj+1,j =
1
2

(
K+

j exp (ik(j)
z L

(j)
z ) K−

j exp(−ik(j)
z L

(j)
z )

K−
j exp (ik(j)

z L
(j)
z ) K+

j exp (−ik(j)
z L

(j)
z )

)
, (A.13)

where coefficients K+
j and K−

j depend on polarization

KTE±
j = 1± k

(j)
z

k
(j+1)
z

, KTM±
j = 1±

n2
(j+1)

n2
(j)

k
(j)
z

k
(j+1)
z

. (A.14)

Matrix mj+1,0 is the product of mj+1,j and mj,0:

mj+1,0 = mj+1,jmj,0. (A.15)
Similarly, matrix wj+1,0 for j < 0:

wj+1,0 = mj+1,jwj,0. (A.16)
After these two simple calculations, it follows from (A.12) that for every j

u(j+1)kε =
1
2

(
δεTE +

n(j)

n(j+1)
δεTM

)

×
(
K+

j ujkε exp (ik(j)
z L(j)

z ) + K−
j v∗jkε exp (−ik(j)

z L(j)
z )

)
, (A.17)

v(j+1)kε =
1
2

(
δεTE +

n(j)

n(j+1)
δεTM

)

×
(
K−

j ujkε exp (ik(j)
z L(j)

z ) + K+
j v∗jkε exp (−ik(j)

z L(j)
z )

)∗
. (A.18)
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