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Spin-dependent electronic transport through two coupled single-level

quantum dots attached to ferromagnetic leads with parallel and antiparallel

magnetizations is analyzed theoretically. The intra-dot Coulomb correla-

tion is taken into account, while the inter-dot Coulomb repulsion is omitted.

Conductance and tunnel magnetoresistance associated with magnetization

rotation are calculated by the nonequilibrium Green function technique. The

relevant Green functions are derived by the equation of motion method in the

Hartree–Fock approximation. The dot occupation numbers and the Green

functions are calculated self-consistently. The interference effects in elec-

tronic transport through quantum dots are analyzed in two different con-

figurations. It is shown that the Fano resonance in conductance can be

observed even for vanishing inter-dot hopping parameter t. The interplay

of the interference effects and the Coulomb interactions in quantum dots is

also analyzed.

PACS numbers: 73.23.–b, 73.21.La, 73.23.Hk

1. Introduction

Electronic transport through two coupled quantum dots (QDs) connected
to two nonmagnetic electrodes was extensively studied in the past few years. As
concerns charge transport through two quantum dots attached to magnetic leads,
only a couple of papers have addressed this problem so far. Significant efforts,
both theoretical [1–10] and experimental [11–14], have been undertaken recently
to understand the interference effects in transport through various QD systems.
These effects appear in conductance as the Fano antiresonance lines [15]. Only
a few theoretical works have addressed so far the role of the signs of dot-lead
non-diagonal matrix elements [16–18]. As far as we know, this issue has been
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considered only in the case of nonmagnetic leads, while no study has been carried
out for quantum dots attached to magnetic leads.

Transport characteristics of the system are calculated using the Green func-
tion formalism. Since the systems with Coulomb interaction cannot be treated
exactly, we applied the Hartree–Fock decoupling scheme to calculate the higher
order Green functions from the relevant equations of motion. The average values
of the occupation numbers (which enter expressions for the Green functions) have
been calculated self-consistently.

The paper is organized as follows. In Sect. 2 we present the model and briefly
describe the theoretical method used to calculate the transport characteristics.
Numerical results on the conductance and associated tunnel magnetoresistance
(TMR) are presented and discussed in Sect. 3.

2. Model and analytical solution

In this paper we consider two coupled single-level quantum dots. The dots
are connected to ferromagnetic leads as shown schematically in Fig. 1. For simplic-
ity, magnetic moments of the leads are assumed to be either parallel or antiparallel.

Fig. 1. Schematic picture of the two configurations of a DQD system coupled to ferro-

magnetic leads studied in this paper. The parameter Γα
iiσ (α = L, R, i = 1, 2) describes

here a contribution to the spin dependent level width due to coupling of the i-th dot

to the α-th lead. Thickness of the solid lines symbolically reflects strength of the corre-

sponding coupling.

We assume that the inter-dot Coulomb interaction is negligible in comparison with
the intra-dot one, and therefore has been omitted. The system can be then de-
scribed by Hamiltonian of the general form

Ĥ = Ĥleads + ĤDQD + Ĥtunnel, (1)
where the first term, Ĥleads, describes the left (L) and right (R) electrodes
in the non-interacting quasi-particle approximation, Ĥleads = ĤL + ĤR, with
Ĥα =

∑
kσ εkασc†kασckασ (for α = L, R). Here, c†kασ (ckασ) is the creation (anni-

hilation) operator of an electron with the wave vector k and spin σ in the lead α,
whereas εkασ denotes the corresponding single-particle energy.
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The second term of the Hamiltonian (1) describes the two coupled quantum
dots,

ĤDQD =
∑

iσ

εiσd†iσdiσ − t
∑

σ

(d†1σd2σ + h.c.) +
∑

i

Uiniσniσ̄, (2)

where σ̄ ≡ −σ, niσ = d†iσdiσ is the particle number operator, εiσ is the discrete
energy level of the i-th dot, t is the inter-dot hopping parameter (assumed real and
independent of the electron spin orientation), whereas Ui (i = 1, 2) is the Coulomb
integral for two electrons residing on the i-th dot. In a general case, the dot levels
can be spin dependent.

The last term, Htunnel, of the Hamiltonian (1) describes electron tunneling
between the leads and dots, and takes the form

Ĥtunnel =
∑

kα

∑

iσ

(V α
ikσc†kασdiσ + h.c.), (3)

where V α
ikσ are the relevant matrix elements. Coupling of the dots to external

leads can be parameterized in terms of Γα
ijσ(ε) = 2π

∑
k V α

ikσV α∗
jkσδ(ε − εkασ) ≈

2πV α
iσV α∗

jσ ρα, with ρα being the density of states in the α-th lead. We assume that
Γα

ijσ is constant within the energy band, Γα
ijσ(ε) = Γα

ijσ = const for ε ∈ 〈−D, D〉,
and Γα

ijσ(ε) = 0 otherwise. Here, 2D denotes the electron band width.
In this paper we consider two arrangements of the couplings between the

dots and leads in the parallel configuration: (i) ΓL
11σ = Γ0(1 ± p), ΓL

12σ = ΓL
21σ =

Γ0

√
β(1± p), ΓL

22σ = βΓ0(1± p), ΓR
11σ = βΓ0(1± p), ΓR

12σ = ΓR
21σ = Γ0

√
β(1± p),

and ΓR
22σ = Γ0(1 ± p) for σ =↑ (upper sign) and σ =↓ (lower sign), where p

is the polarization factor of the leads, Γ0 is a constant, and β takes into account
difference in the coupling of a given electrode to the two dots; (ii) ΓL

11σ = Γ0(1±p),
ΓL

12σ = ΓL
21σ = qLΓ0

√
β(1±p), ΓL

22σ = βΓ0(1±p), ΓR
11σ = Γ0(1±p), ΓR

12σ = ΓR
21σ =

qRΓ0

√
β(1 ± p), and ΓR

22σ = βΓ0(1 ± p). In the case (ii) the factors qL and qR

take into account signs of ΓL
12σ and ΓR

12σ, so that qL/qR = ±1. Generally, one is
free to choose the signs of the off-diagonal elements of both ΓL

σ and ΓR
σ , because

(Γα
ijσ)2 = Γα

iiσΓα
jjσ.

Assuming ΓL
12σ/ΓR

12σ = 1 or ΓL
12σ/ΓR

12σ = −1 we deal with two distinct
models. In the following we will refer to the first model as the plus model,
for which qL/qR = 1. On the other hand, the model with qL/qR = −1 will
be referred to as the minus model. One can show that both dot states in the
plus model are coupled to the same effective channel, i.e. to the states ckσ+ =
(ckLσ + ckRσ)/

√
2, but they are completely decoupled from the antisymmetric

combination ckσ− = (ckLσ − ckRσ)/
√

2. In turn, in the minus model one dot is
connected to the symmetric combination (ckσ+ states) but the other is connected
to the antisymmetric combination (ckσ− states). Thus, in the minus case the dots
are connected to different effective channels [16].

Electric current J flowing through the system is determined by the retarded,
advanced, and lesser Green functions of the dots according to the following general
formula [19, 20]:
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J =
ie
2h̄

∑
σ

∫
dε

2π
Tr{[ΓL

σ − ΓR
σ ]G<

σ (ε)

+[fL(ε)ΓL
σ − fR(ε)ΓR

σ ][Gr
σ(ε)−Ga

σ(ε)]}. (4)
Here, fα(ε) = [e(ε−µα)/kBT + 1]−1 is the Fermi–Dirac distribution function for
the lead α, G<

σ (ε) and Gr(a)
σ (ε) are the Fourier transforms of the lesser and re-

tarded (advanced) Green functions of the dots for spin σ. To calculate the Green
functions G

r(a)
ijσ (ε), we write the corresponding equation of motion and apply the

Hartree–Fock decoupling scheme for higher order Green functions. In turn, the
lesser Green function G<

ijσ(ε) has been calculated from the corresponding equation
of motion, with the higher order Green functions calculated on taking into account
the Langreth theorem [20] and the Hartree–Fock decoupling scheme assumed when
calculating G

r(a)
ijσ (ε). We note that the formulae for Green functions include the ex-

pectation values 〈d†iσdiσ〉, nīiσ, 〈d†iσckασ〉 and 〈c†kασdiσ〉, which can be determined
taking into account the identities, niσ = −i

∫
dε
2π G<

iiσ(ε), nīiσ = −i
∫

dε
2π G<

īiσ
(ε),

〈d†iσckασ〉 = −i
∫

dε
2π 〈〈ckασ|d†iσ〉〉<, and a similar one for 〈c†kασdiσ〉.

3. Numerical results

Let us consider first a noninteracting case, U = 0. In Fig. 2 the linear
conductance is plotted as a function of the position of the average bare dot’s level
E = (ε1 + ε2)/2, where the dot levels have been assumed to be spin degenerate,
εiσ = εi for σ =↑, ↓, and ε1 = E + ∆/2, ε2 = E − ∆/2, with ∆ = ε1 − ε2. To
simplify notation we also introduce the quantity q = qL/qR.

From the numerical analysis follows that in order to observe the Fano line
in conductance for the system shown in Fig. 1a one needs a nonzero inter-dot
coupling, whereas for the structure shown in Fig. 1b the Fano effect appears in
both models (qL/qR = ±1) even for vanishing inter-dot coupling parameter (t = 0),
provided the dot levels are different, ε1 6= ε2. However, the Fano line shapes for
the two models are different.

Let us now give some insight into the two models shown in Fig. 1b. One can
prove that in the minus model, the density of states for each of the dots’ levels is
unaffected by the other level, because they are effectively decoupled as we already
mentioned above. This, however, is not true for the plus model (q = 1).

Generally, the interference effects in conductance can be observed in both
models, despite the fact that the dots’ levels do not interfere in the case of
q = −1. This appears because the transmission takes place between the left and
right leads, and not between the symmetric and antisymmetric combinations of
ckLσ and ckRσ. In the plus model, when one of the dots’ levels (ε1 or ε2) approaches
the Fermi level of the leads, one observes a maximum in the conductance. The
conductance goes to zero when the chemical potential of the leads coincides with
ε+ = (Γ11σε2 + Γ22σε1)/(Γ11σ + Γ22σ) (where Γiiσ = ΓL

iiσ + ΓR
iiσ for i = 1, 2). On

the other hand, for the minus model, the conductance has maxima in the vicinity
of the dot’s levels, and reaches zero at ε− = (Γ11σε2−Γ22σε1)/(Γ11σ−Γ22σ). When
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Fig. 2. Linear conductance as a function of the position of average bare dot’s level

for parallel magnetic configuration, and for the plus model (left part) and minus model

(right part), calculated for indicated values of the splitting of the dots levels ∆. The

other parameters are: p = 0.4, t = 0, β = 0.15, U = 0, and kBT = 0.01. The energy is

measured in the units of Γ .

the dots’ levels are close to each other, the two maxima merge into a single peak
(see Fig. 2d). For ε1 = ε2 one observes a dip structure, see Fig. 2f. The dip is a
consequence of the destructive quantum interference of electron waves transmitted
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through the two levels of the double quantum dot (DQD) system, renormalized
due to an effective interaction of the bare levels via the electrodes owing to nonzero
off-diagonal elements of the coupling matrix [8]. It is worth noting that a similar
situation also occurs in the model shown in Fig. 1a, when the dot levels are equal,
ε1 = ε2, inter-dot coupling parameter vanishes, t = 0, and β → 0. At least, for
ε1 = ε2 and Γ11σ = Γ22σ, a complete destructive interference takes place. Ferro-
magnetism of the electrodes has some influence on positions of the conductance
maxima for both spin orientations, but only for the minus model. In the minus
model the maxima positions (Breit–Wigner and Fano) for both spin orientations
are shifted away, whereas in the plus model they are unaffected.

Figure 3 shows TMR in the linear response regime as a function of the
position of average dot’s level for both plus and minus models. When the dots’
levels are well above or well below the Fermi level of the leads, the TMR tends
to the Julliere value observed in planar magnetic tunnel junctions. One can see
that in the minus model the TMR tends to Julliere’s value faster than in the
plus model. When, in turn, the dot levels cross the Fermi energy, the situation
becomes more complex and TMR significantly depends on the sign of q. In the
limit of U = 0, see Fig. 3, TMR is then suppressed below the Julliere value in the
minus model, whereas for the plus model this suppression occurs only in a part of
this region. It is worth noting that a similar suppression of TMR was also found in
single quantum dots [21]. However, the suppression of TMR in Fig. 3 is stronger
than that in a single dot. Moreover, in the minus model TMR even changes sign
for a certain region of the average dot’s level position, while TMR in that region
becomes enhanced in the plus model.

Fig. 3. TMR as a function of the position of average bare dot’s level for the plus model

(q = 1) and minus model (q = −1), and for ∆ = 1.6 and U = 0. The other parameters

are the same as in Fig. 2.
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Let us consider now the influence of the intra-dot Coulomb repulsion on
the picture described above. This is shown in Fig. 3 for indicated value of the
parameter U and for both models. As follows from the presented numerical re-
sults, the Coulomb interaction leads to splitting of the double peak structure from
Fig. 2a, b. As a consequence, the four-peak structure develops now in the conduc-
tance for finite U . Particularly, the four-peak structure in the total conductance
(for both spin orientations) is well resolved in the plus model (Fig. 4a), whereas in
the minus model one observes three peaks in the total and spin-up conductance,
and four peaks in the spin-down conductance. This is because splitting of the res-
onances in the vicinity of −∆/2 in the minus model is not well resolved. It is also
worth noting that in the minus model, a characteristic Coulomb gap between the
“original” peaks and their Coulomb counterparts appears for a sufficiently large U .

Fig. 4. Linear conductance as a function of the position of average bare dot’s level

for parallel magnetic configuration, and for the plus model (a) and minus model (b),

calculated for ∆ = 1.6, and U = 2. The other parameters are: p = 0.4, t = 0, β = 0.15,

and kBT = 0.01. The energy is measured in the units of Γ .

In conclusion, we have considered the interference effects in electronic trans-
port through two quantum dots coupled to ferromagnetic leads, with two different
arrangements of the couplings. We have shown that the Fano resonance may be
observed even for vanishing inter-dot coupling parameter.

Acknowledgments

This work, as part of the European Science Foundation EUROCORES Pro-
gramme SPINTRA, was supported by funds from the Ministry of Science and
Higher Education as a research project in years 2006–2009 and the EC Sixth
Framework Programme, under contract No. ERAS-CT-2003-980409.



480 P. Trocha, J. Barnaś
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[9] A. Wysocki, J. Barnaś, Acta Phys. Superficierum 9, 177 (2006).

[10] Y. Tanaka, N. Kawakami, Phys. Rev. B 72, 085304 (2005).

[11] J. Gores, D. Goldhaber-Gordon, S. Heemeyer, M.A. Kastner, H. Shtrikman,

D. Mahalu, U. Meirav, Phys. Rev. B 62, 2188 (2000).

[12] A.A. Clerk, X. Waintal, P.W. Brouwer, Phys. Rev. Lett. 86, 4636 (2001).

[13] K. Kobayashi, H. Aikawa, S. Katsumoto, Y. Iye, Phys. Rev. Lett. 88, 256806

(2002); Phys. Rev. B 68, 235304 (2003).

[14] A.C. Johnson, C.M. Marcus, M.P. Hanson, A.C. Gossard, Phys. Rev. Lett. 93,

106803 (2004).

[15] U. Fano, Phys. Rev. 124, 1866 (1961).

[16] M. Sindel, A. Silva, Y. Oreg, J. von Delft, Phys. Rev. B 72, 125316 (2005).

[17] M. Goldstein, R. Berkovits, New J. Phys. 9, 118 (2007).

[18] A. Silva, Y. Oreg, Y. Gefen, Phys. Rev. B 66, 195316 (2002).

[19] Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).

[20] A.P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B 50, 5528 (1994).
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