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We present theoretical studies of the linear-k strain induced spin split-

ting of the conduction band in the zinc-blende semiconductors. The studies

are based on ab initio calculations performed within the density functional

theory with non-scalar relativistic effects fully taken into account. This per-

mits one to construct effective Hamiltonian for the strain induced linear-k

spin splitting of the zinc-blende semiconductors. This Hamiltonian repro-

duces fully the structure of the strain induced linear-k spin splitting and

generalizes previously introduced and commonly used effective Hamiltonian.
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1. Introduction

An ability to control the spin transport in semiconductors is an essential
issue in semiconductor spintronics and information processing [1, 2]. One of the
methods to achieve control of the electron spin degree of freedom involves the in-
trinsic spin–orbit interaction (SOI). The SOI can be tuned by means of electric
field and/or electric gates [3] and this has been confirmed experimentally [4]. In
semiconductors the spin–orbit effect appears as an interaction of the electron spin
with an effective magnetic field, whose direction and magnitude depend on the
electron momentum. The specific form of this dependence is determined by the
crystal symmetry. Therefore, the form of SOI in semiconductors can be modified
by deformation and can influence the spin current. Such effect of strain-induced
SOI on spin transport has been demonstrated experimentally [5]. On the other
hand, the strain can be associated with mechanical motion of solid, in particular,
with oscillations in nanomechanical systems. This effect, in turn, facilitates the
tuning of SOI with nanomechanical oscillations and allows the design of interesting
devices [6]. Therefore, a detailed knowledge of the strain induced SOI in semicon-
ductors is essential for understanding, modeling, and design of future functional
devices.
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In the present paper, we focus on the strain-induced SOI in the conduc-
tion band. Traditionally, the strain effects on the spin splitting caused by SOI
are described by the Hamiltonian introduced by Pikus and Titkov many years
ago [7]. However, the microscopic analysis of the strain induced spin splitting is
still lacking. In this paper, we study the spin splitting of the conduction band in
zinc-blende semiconductors by means of ab initio calculations in the framework of
the density functional theory (DFT) with non-scalar relativistic effects taken non-
perturbatively into account. Our studies reveal new features of the SOI that are
not included in the traditionally employed Hamiltonian. In particular, we find out
that the SOI depends on the atomistic structural details of the strained semicon-
ductor, and therefore cannot be described by the phenomenological Hamiltonian.

The paper is organized as follows. In Sect. 2, we describe very shortly the
computational procedure, in Sect. 3 we discuss the obtained results, and finally
we conclude the paper in Sect. 4.

2. Calculational details

The ab initio calculations of spin splitting in conduction band of semiconduc-
tors alloys were performed employing density functional theory (DFT) with local
density approximation (LDA) [8] for exchange and correlation with parameteriza-
tion of Perdew and Zunger [9]. The electron–ion interaction has been described em-
ploying relativistic separable Kleinman–Bylander pseudopotentials [10, 11]. This
computational scheme provides a very accurate description of the spin splitting in
various semiconductors [11, 12].

Fig. 1. The nearest surrounding of an atom in the strain deformed unit cell. One atom

is placed at the origin. The second atom can move along η direction without changing

the crystal symmetry. The invariant directions, for C2v symmetry η = ξ(0, 0, 1) and for

C3v symmetry η = ξ 1√
3
(1, 1, 1), are indicated in the figure. The position of the second

atom in the unit cell is determined by the minimization of the total energy.
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The deformation of the cubic lattice is described by deformation (strain)
tensor

ε̂ =




εxx εxy εxx

εyx εyy εyz

εzx εzy εzz


 . (1)

The deformation tensor can be in general non-symmetric. The vectors of primitive
translations in the strained crystal are modified by the lattice deformation a′i =
(1 + ε̂)ai, where {ai} are fcc lattice vectors, whereas the basis vectors of the
strained crystal take the following shape τ ′α = (1 + ε̂)τα + η, where {τα} are the
basis vectors of the unstrained crystal, and η is the shift of the atoms along the
line that remains invariant under symmetry operations of the point group of the
strained crystal (see Fig. 1). This η is usually called the internal strain parameter
and can be only determined by the minimization of the total energy of the strained
crystal. The form of the deformation tensor, determines the reduced symmetry
(from Td) of the strained lattice, for example


0 ε 0
ε 0 0
0 0 0


 → C2v




0 ε ε

ε 0 ε

ε ε 0


 → C3v




0 ε 0
0 0 0
0 0 0




→ C2




0 ε 0
−ε 0 0
0 0 0


 → S4. (2)

We have considered various lattice deformations (also described by non-symmetric
tensors), and for each of them we have calculated the total energies, the optimized
geometry of the unit cell (just determining the internal strain parameter η) and
further calculated the relativistic band structure of the strained semiconductor.
This procedure allows us to calculate conduction band spin splitting that will be
analyzed in the next section within the effective Hamiltonian.

3. Results — linear-k spin splitting in conduction band

Traditionally the strain induced spin splitting of the conduction band is
described by the Pikus and Titkov Hamiltonian [7]. Since the strain reduces the
crystal symmetry, the linear-k terms in the Hamiltonian become allowed

Ĥ
(PT)
SO (ε̂, k) = σ ·

[
Ω

(PT)
R (ε̂, k) + Ω

(PT)
D (ε̂, k)

]
, (3)

where σ is the vector of the Pauli matrices and effective magnetic fields Ω
(PT)
R

and Ω
(PT)
D read

Ω (PT)
Rx = C3(εzxkz − εxyky), Ω (PT)

Ry = C3(εxykx − εyzkz),

Ω (PT)
Rz = C3(εyzky − εzxkx), Ω (PT)

Dx = D(εyy − εzz)kx,

Ω (PT)
Dy = D(εzz − εxx)ky, Ω (PT)

Dz = C3(εxx − εyy)kz. (4)
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The constants C3 and D may be calculated using perturbation theory or fitted,
at least in principle, to the values of spin splitting obtained in the ab initio calcu-
lations. In this section, we concentrate on deformations characterized by tensors
with zero diagonal elements as exemplified in Eq. (2). We compare the conduction
band spin splitting obtained from the ab initio calculations with the spin split-
ting calculated from the diagonalization of the effective Pikus–Titkov Hamiltonian
(Eq. (3)). This comparison leads to the conclusion that the Pikus–Titkov Hamil-
tonian generally does not describe spin splitting obtained from the first principles.

The first-principle calculations clearly show that there is no linear-k spin
splitting for the deformation reducing Td symmetry to S4 (tensor No. 4 in Eq. (2)),
whereas Hamiltonian of Pikus and Titkov leads to such splitting. Further, the spin
splitting for the symmetry C2 as calculated from the ab initio is only half as large
as obtained from the Pikus–Titkov Hamiltonian. It is very well understood, if one
writes the deformation tensor leading to the C2 symmetry as


0 ε 0
0 0 0
0 0 0


 =




0 ε/2 0
ε/2 0 0
0 0 0


 +




0 ε/2 0
−ε/2 0 0

0 0 0


 . (5)

Since the second part of the deformation tensor does not induce the linear-k spin
splitting, the spin splitting is determined solely by the first part of the deformation
tensor. In general, the Pikus–Titkov Hamiltonian describes correctly the conduc-
tion band spin splitting for symmetric deformation tensors only, ε̂αβ = ε̂βα. Then,
the Pikus–Titkov Hamiltonian is equivalent to the Rashba Hamiltonian

Ĥ
(PT)
SO (k) = ĤRashba

eff (k) = σ · (k × n), (6)
where the vector n = (εyz, εxz, εxy) determines the axis of uniaxial symmetry.

In the case of deformations leading to symmetry C2v and C3v, the corre-
sponding expressions for the spin splitting obtained from the Pikus–Titkov Hamil-
tonian read respectively,

∆E
(PT)
↑↓ (k) = 2C3|ε|

√
k2

x + k2
y (7)

and

∆E
(PT)
↑↓ (k) = 2C3|ε|

√
(ky − kz)2 + (kz − kx)2 + (kx − ky)2. (8)

In the case of C2v symmetry, the in-plane spin splitting (i.e., for wave vectors lying
in the x−y plane) obtained from the Pikus–Titkov Hamiltonian is isotropic. It is
not the case of spin splitting obtained from the first-principles calculation, where
for this symmetry the in-plane spin splitting shows a clear anisotropy. Addition-
ally, as can be seen from Eq. (8), the spin splitting obtained from the Pikus–Titkov
Hamiltonian for crystal structure of C3v does not depend on the sign of the defor-
mation. This contradicts the ab initio calculations, which lead to the spin splitting
such that ∆E

(ab−initio)
↑↓ (−ε, k) 6= ∆E

(ab−initio)
↑↓ (ε, k). All this clearly demonstrates

that another effective Hamiltonian is needed to describe the linear-k conduction
band spin splitting from the first-principles calculations.
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Here, we construct such an effective Hamiltonian and describe microscopic
nature of the parameters entering the Hamiltonian. The effective Hamiltonian has
the form

Ĥeff(k) = σ · [ΩR(k) + ΩD(k)] , (9)
where ΩR(k) and ΩD(k) are the effective magnetic fields. For C2v symmetry,

ΩR(k) = αR(ky,−kx, 0) and ΩD(k) = αD(−kx, ky, 0),

whereas for C3v symmetry

ΩR(k) = αR
1√
3
(ky − kz, kz − kx, kx − ky) and ΩD(k) =

αD

αR
ΩR(k),

where αR and αD are materials constant. The spin splitting for C2v and C3v

symmetry is equal to

∆E
(C2v)
↑↓ = 2k‖

√
α2

R + α2
D − 2αDαR sin 2ϕ,

∆E
(C3v)
↑↓ = 2k|αR + αD|

√
(ky − kz)2 + (kz − kx)2 + (kx − ky)2, (10)

where ϕ is the angle between in-plane wave vector k‖ (i.e., lying in the (x, y) plane)
and the [100] cubic direction.

The ab initio studies allow for relating the constants αR and αD in the
effective Hamiltonian to the strength of the crystal deformation ε and additionally
to internal strain parameter (i.e., cell geometry). The analysis of spin splitting
obtained from the first principles gives us the proper form of the constants αR

and αD

αR = α(ξ)ε, αD = β(ξ)ε2, (11)
where ξ determines the position of the second atom in the deformed unit cell along
the invariant direction η and takes a special value ξ0 for the optimized unit cell
geometry. Let us note that the internal strain parameter ξ0 depends itself on the
external strain ε. It is now completely clear (see Eqs. (10)),why the spin splitting is
not isotropic for the in-plane wave vectors in the case of the C2v symmetry (simply
αD is not zero) and a change of the sign in the deformation tensor (ε → −ε) leads
to a different magnitude of the spin splitting in the case of C3v symmetry. In
this manner, we have constructed the effective Hamiltonian that describes the
linear-k conduction band spin splitting and reproduces the linear-k spin splitting
obtained from the first principles. This effective Hamiltonian involves terms that
are linear in the wave vector k and quadratic in the deformation strength ε. Since
the latter are lacking in the Pikus–Titkov Hamiltonian, the richer structure of the
linear-k spin splitting cannot be reproduced with it. One can say that the Pikus–
Titkov Hamiltonian approximates the linear-k spin splitting up to terms linear in
the strain.
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4. Conclusions

The first-principles calculations reveal the physical mechanisms that deter-
mine the strain induced linear-k spin splitting. They show that the terms quadratic
in strain play an important role and neglecting them leads to not correct struc-
ture of spin splitting. It turns out that the strain induced linear-k spin splitting
in III–V semiconductors is dependent on the geometry of the deformed unit cell.
Therefore, the strain induced linear-k spin splitting can be determined accurately
only by means of the first-principles calculations.
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