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Hoża 69, 00-681 Warszawa, Poland

We present theoretical studies of the AlGaInN nitride quaternary alloys.

The studies are based on ab initio calculations performed within the density

functional theory and virtual crystal approximation. The equilibrium lattice

constants, bulk moduli, and elastic constants were calculated for the whole

possible range of concentrations of the alloy constituents. The theoretical

values were then fitted with second- and third-order polynomials. For all

properties studied, the considerable bowing was observed.

PACS numbers: 61.66.Dk, 61.66.–f, 62.20.Dc, 64.30.+t

1. Introduction

AlGaInN quaternary alloys have become important components of the opto-
electronic devices such as light emitting and laser diodes (LEDs and LDs) in green,
blue, and UV regime [1–3]. The main idea of employing AlGaInN alloys lies in
the possibility of tuning the band gap of the alloy in the range from green to UV
light emission with a suitable In and Al concentration, simultaneously keeping the
alloy lattice matched to the GaN substrate. However, the progress in development
of devices based on these alloys is hampered by the very poor knowledge of the
cohesive and electronic properties of these technologically important alloys. This
concerns also the reliable modeling of functional systems employing quaternary
AlGaInN alloys.

To close this gap, in the present paper we have undertaken complex theoret-
ical studies of the electronic and cohesive properties of the quaternary AlGaInN
alloys employing virtual crystal approximation (VCA) [4]. Our studies are based
on ab initio calculations in the framework of the density functional theory (DFT)
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within local density approximation (LDA) to the exchange and correlation func-
tional and pseudopotentials to describe electron–ion interaction. This approach
turned out to be very successful in describing cohesive and electronic properties
of the constituent bulks, AlN, GaN, and InN. The LDA + VCA computational
scheme has also led to valuable predictions of the cohesive properties of many
alloys [5]. Here, we provide the theoretical predictions of the cohesive properties
of the cubic quaternary AlxGayIn1−x−yN alloys, such as the equilibrium lattice
constants, bulk moduli, and elastic constants, for the whole possible range of the
In and Al concentration, x and y, respectively.

The technologically important nitride alloys are usually grown in the wurtzite
crystallographic structure. However, the ab initio calculations for the wurtzite
structure are much more complex than for the simple cubic one. In such situation,
there is a common practice to employ formulae that allow a reliable estimation
of elastic constants for the wurtzite structure from the calculations of the cubic
systems [6, 7]. Therefore, the theoretically predicted cohesive properties for cubic
quaternary alloys could close the gap of lacking knowledge and provide valuable
data for modeling nitride devices based on quaternary alloys. The paper is orga-
nized as follows. In Sect. 2, we describe very shortly the computational procedure,
in Sect. 3 we discuss the obtained results, and finally we conclude the paper in
Sect. 4.

2. Computational details

The ab initio calculations of cohesive properties of quaternary alloys were
performed employing DFT with LDA [8] for exchange and correlation with pa-
rameterization of Perdew and Zunger [9]. The electron–ion interaction has been
described employing separable Kleinman–Bylander pseudopotentials [10, 11]. This
scheme allows for an easy implementation of the VCA, and it leads to only minor
modifications for standard plane-waves based numerical codes. For a given atom,
the nonlocal separable pseudopotential reads

V̂ ps
ion = V̂loc +

∑

ljm

|fljm〉〈fljm|
Wlj

, (1)

where the so-called projector |fljm〉 = |δVljRljYljm〉, δVlj = V ps
lj − Vloc, and nor-

malization factors Wlj = 〈Rlj |δVlj |Rlj〉, whereas Rlj and V ps
lj fulfill the pseudopo-

tential equation(
− d2

dr2
+

l(l + 1)
r2

+ V ps
lj (r)− εlj

)
Rlj(r) = 0, (2)

with l, j, m being angular, total, and magnetic angular momentum quantum
numbers, respectively, εlj is one particle atomic energy of state (l, j), and the lo-
cal part of the pseudopotential, Vloc, is usually taken as one of the pseudopotential
components V ps

lj . In the AlGaInN quaternary alloys studied in this paper, each
site of the cation sublattice is occupied by one of three cations In, Al, or Ga. In
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the spirit of the VCA, the effective pseudopotential of the cationic site is taken
as a mixture of the pseudopotentials of the individual cations α weighted by their
corresponding concentrations xα:

V̂ cation
VCA =

∑
α

xkaV̂ α
loc +

∑

α,I

xα
|fα

I 〉〈fα
I |

WI
, (3)

where indices l, j, m have been lumped into one index I. This form of the VCA
pseudopotential allows for a very easy calculation of the matrix elements in the
plane-wave basis. The computational scheme for separable pseudopotentials em-
ployed in this paper is much simpler than the method proposed recently [12].

3. Results

The predicted equilibrium lattice constants and bulk moduli of the cubic
quaternary AlGaInN alloys are depicted in Figs. 1 and 2, respectively. The devi-

Fig. 1. The predicted equilibrium lattice constants for cubic AlxGayIn1−y−xN qua-

ternary alloys as a function of Al concentration x for a series of Ga concentrations y

(various squares) from y = 0 to y = 1.0 with step 0.1. Let us note that only such values

of x are meaningful that lead to the positive concentrations for In cations. The solid

lines represent third-order polynomial fit to the numerically computed values (see the

text).

ation from the linear concentration dependence (Vegard-like law) and considerable
bowing are apparent. For a given physical quantity W that characterizes quater-
nary alloy, we define the bowing function B(x, y) as the deviation from the linear
terms

W (x, y) = xW (AlN) + yW (GaN) + (1− x− y)W (InN) + B(x, y). (4)
We have used two models of the bowing term; one containing second-order terms
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Fig. 2. The predicted bulk moduli for cubic AlxGayIn1−y−xN quaternary alloys as a

function of Al concentration x for a series of Ga concentrations y between 0.0 and 1.0.

The validity range of variable x and meaning of solid lines were explained in caption to

Fig. 1.

only, B(1)(x, y), and the second one with third-order terms, B(2)(x, y),

B(1)(x, y) = A
(1)
0 x(1− x) + A

(1)
1 y(1− y) + B

(1)
10 xy

and

B(2)(x, y) = A
(2)
0 x(1− x) + A

(2)
1 y(1− y) + B

(2)
10 xy

+B00x
2(1− x) + B11y

2(1− y) + C12xy2 + C21x
2y, (5)

where constants A
(1)
0 , A

(1)
1 , B

(1)
10 , A

(2)
0 , A

(2)
1 , B

(2)
10 , B00, B11, C12, and C21 have

been determined by fitting to the values from ab initio calculations. The ap-
plication of the Vegard-like law for lattice constants and bulk moduli of alloys
leads to maximum errors of 2.1% and 9%, respectively. The quality of the fits
improves considerably, if one uses bowing terms, being equal to 0.24% and 3%
for B(1)(x, y) model and 0.05% and 1% for B(2)(x, y) term. The calculated val-
ues of the constants describing the bowing terms in Eq. (4) are as follows: for
the lattice constant (in Å) A

(1)
0 = 0.39, A

(1)
1 = 0.21, B

(1)
10 = −0.48, A

(2)
0 = 0.28,

A
(2)
1 = 0.19, B

(2)
10 = −0.23, B00 = 0.21, B11 = 0.06, C12 = −0.25, C21 = −0.30,

and for the bulk modulus (in GPa) A
(1)
0 = −57.89, A

(1)
1 = −49.68, B

(1)
10 = 93.09,

A
(2)
0 = −12.86, A

(2)
1 = −24.44, B

(2)
10 = −77.95, B00 = −88.63, B11 = −53.19,

C12 = 166.79, C21 = 191.39.
We have also calculated elastic constants for the AlxGayIn1−y−xN quater-

nary alloys. For each pair of concentrations (x, y) we deformed infinitesimally
cubic unit cell with equilibrium lattice constant of the alloy a(x, y) and calculated
the total energy of the deformed lattice. The difference in the total energies of
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Fig. 3. The elastic constant C11 for AlxInyGa1−y−xN quaternary alloy as a function of

Al concentration x for a series of In concentrations y in the range from 0.0 to 1.0. The

solid lines represent the third-order polynomial fit to the theoretical values.

the deformed and not deformed lattices was then fitted to the corresponding ex-
pressions from the elasticity theory [7]. In this manner we have obtained elastic
constants C11(x, y), C12(x, y), and C44(x, y) for the whole range of the possible
concentrations of the alloy constituents. In Fig. 3, the calculated elastic constants
C11(x, y) are depicted together with the third-order polynomial fit of this quantity.
One can see that the quality of the fit is not as good as in the case of lattice con-
stant or bulk modulus and the error exceeds 12%. Just to illustrate the range of
possible values of the elastic constants in the cubic quaternary AlGaInN alloy, we
present the so-called ternary plots for C11(x, y) and C12(x, y) elastic constants in
Fig. 4. We would like to stress that all calculated quantities for binary alloys, i.e.,
AlN, GaN, and InN, agree very well with values from previous theoretical DFT
calculations and with experimental values [7, 13].

Fig. 4. Ternary plots for elastic constant C11 (a) and C12 (b) (in GPa) for AlGaInN

quaternary alloys.
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4. Conclusions

The ab initio calculations in the framework of LDA and VCA provide the-
oretical predictions for equilibrium lattice constants and elastic constants of the
quaternary AlGaInN alloys. These quantities exhibit pronounced bowing. The cal-
culated values constitute a solid basis for modeling of functional devices utilizing
the nitride quaternary alloys.
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