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We study the charge tunneling via the quantum dot coupled to normal
and superconducting leads, where the superconducting electrode has either
an isotropic or anisotropic (of d-wave symmetry) energy gap. We use the sin-
gle impurity Anderson model and apply the nonequilibrium Green function
formalism to determine the differential tunneling conductance. The influ-
ence of the proximity effect between the quantum dot and superconductor
on the transport properties of the system manifests itself in the Andreev
conductance.

PACS numbers: 73.23.-b, 74.20.Fg, 74.45.+c

1. Introduction

The ability to fabricate and operate the solid state quantum devices of
nanometer size such as quantum dots, quantum wires, and single molecules opens
exciting perspectives for the future nanotechnology. Their unique transport prop-
erties can be used for constructing various nanodevices. Recently there has been
observed a growing interest in studying the single electron transistor (SET) con-
sisting of the conducting source, superconducting drain, and the quantum dot
located in-between [1-7].

In the structures with both normal electrodes the discrete energy spectrum
of the dot leads to oscillations of the tunneling conductance. If one electrode is
replaced by a superconductor there arise some qualitatively new effects. They
are related with activation of anomalous transport channels such as the Andreev
current. This phenomenon is sensitive to the symmetry of the order parameter
and we will illustrate it here by comparing the results for isotropic and anisotropic
superconductors.

2. Theoretical description

We assume that the quantum dot (QD) coupled to the normal and super-
conducting leads can be described by the single impurity Anderson Hamiltonian
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Operators cigo (c,':ﬁa) annihilate (create) electrons in the normal (8 = N) or
the superconducting (3 = S) electrodes with the corresponding energies kg, =
€ko — 1@ measured from the chemical potentials which in a presence of the external
voltage V are shifted by un — us = eV. Operators d,, df refer to the localized
electrons of the dot. The QD electrons are characterized by the single energy
level €4 and a potential U of the on-dot Coulomb repulsion. Vgg describes the
hybridization between the localized and itinerant electrons.

To determine the charge current J(V) = —e(Ny,) we have to resort to the
nonequilibrium Keldysh Green function formalism. This problem is exactly solv-
able only if one omits the Coulomb interactions U. Otherwise some further ap-
proximate treatments have to be used in order to handle the correlation effects.
The Dyson equation G5(w)™! = gh(w)™ — Xp(w) — Xi(w) involves the matrix
self-energies where the contribution Xy(w) corresponds to the noninteracting case
(U = 0) and the part Xj(w) is due to correlation effects. We focus here on the
simple (but non-trivial) case of the uncorrelated QD when Xj(w) = 0. A more
general case U # 0 will be discussed separately.

3. Results

Assuming that the energy gap of superconducting lead is isotropic over the
Fermi surface Ar = A we investigate the energy spectrum of QD and conductance
of the tunneling system. In the left hand side part of Fig. 1 we show the density
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Fig. 1. Spectral function p(w) of the uncorrelated (U = 0) quantum dot coupled to
a normal lead and s-wave superconductor with A = 0.1D and QD level ¢4 = 0. We

considered |eg| < D and used a finite band width D as a unit for the energies.
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of QD. We notice that the energy level ¢4, which is located in the center of super-
conducting gap, splits into two peaks due to the particle-hole mixing induced by
the proximity effect. It has been noted by Tanaka et al. [7] that the broadening of
peaks is given by I'y while their mutual distance is controlled by I's (here I's is the
coupling between the quantum dot and (3 lead, which we assume to be constant).

The structure of the QD spectral function p(w) has a direct impact on the
differential conductance G(V) = dJ/dV. In the right hand side part of Fig. 1 we
show the low temperature conductance versus the bias V. Let us emphasize that
the in-gap conductance (for |eV| < A) arises from the Andreev current.

In superconductors with d-wave symmetry of the order parameter the energy
gap varies over the Fermi surface Ap = A(coskya — cos kya) vanishing along the
nodal directions k, = £k, hence the corresponding quasiparticle density of states
is gapless. Because of symmetry reasons [8] the on-dot Green function G%(w)
becomes diagonal (no proximity effect). This has a substantial influence on the
spectral function p(w) (shown in Fig. 2) characterized by a single peak structure.

0.025

0.02

0.015 |

G(V)

001 t

0.005 b

0 e
' s ‘ s ' ' ] 02 -0.15 -0.1 005 0 005 01 015 02
) o o | eV/D

Fig. 2. The same results as in Fig. 1 but for the d-wave superconductor. Inset shows

the energy dependence of the QD coupling to d-wave superconductor.

This peak can be further modified due to correlation effects [9] but even for U = 0
its width is strongly affected by the energy dependence of I's(w) (see the inset in
Fig. 2 on the left). The absence of proximity effect suppresses all the anomalous
tunneling channels [10] (including the Andreev current) therefore the differential
conductance qualitatively differs in comparison to isotropic superconductor. In
Fig. 3 we illustrate G(V') for the QD coupled to the isotropic and d-wave super-
conductors for a set of energy levels 4.

In summary, we studied the tunneling through the quantum dot located
between the normal and superconducting leads with either the isotropic or
anisotropic (d-wave) order parameter. For the isotropic superconductor we find
that the quantum dot absorbs the off-diagonal ordering (the proximity effect) and
this strongly affects the charge transport at low bias |eV| < A. Because of the
particle-hole mixing there appear two well-separated in-gap maxima which show
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Fig. 3. Voltage dependence of the differential conductance G(V) for the quantum dot
with U = 0 and I'n = I's. The figure illustrates the influence of QD energy level 4 for

the s-wave (left part) and d-wave (right part) superconductor.

up in the Andreev conductance. For the d-wave superconducting lead the proxim-
ity effect is absent. In consequence, the tunneling occurs only through the usual
normal channel and the differential conductance is suppressed at small voltage V.
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