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The paper is concerned with investigation of the influence of an intense

high frequency electric field and relativistic warm plasma waveguide on elec-

trostatic oscillations of nonuniform bounded plasma. The stabilizing effect

of a strong high frequency (pump) electrical field on beam–plasma interac-

tion in a cylindrical relativistic warm plasma waveguide is discussed. A new

mathematical technique “separation method” was applied to the two-fluid

plasma model to separate the equations, which describe the system, into two

parts, time and space parts. Plasma electrons are considered to have a rela-

tivistic, thermal velocity. It is shown that a high frequency electric field has

no essential influence on dispersion characteristics of unstable surface waves

excited in a relativistic warm plasma waveguide by a low-density electron

beam. The region of instability is only slightly narrowing and the growth

rate decreases by a small parameter and this result was reduced comparing

to cold, nonrelativistic plasma. Also, it is found that the plasma electrons

did not affect the solution of the space part of the problem.

PACS numbers: 52.27.Ny, 52.35.–g, 94.20.wf

1. Introduction

The investigation of beam–plasma instabilities evokes interest not only from
the point of view of understanding this particular type of instability but also as
a method of modeling the instabilities caused by resonant interactions in more
complex cases.

In particular, in that kind of modeling the transition from the laminar to
the turbulent state results from instabilities and the control of instabilities.

It is well known that (e.g., [1, 2]) propagation of charged particle beams
through plasma leads to development of great variety of instabilities. Sometimes
such instabilities could be used as a basis for the construction of effective generators
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of electromagnetic radiation, for heating of magnetically confined plasmas, and for
particle acceleration. But often beam instabilities are undesirable. This is true
particularly for the experiments on magnetic fusion research where instabilities
may cause an appreciable enhancement in the transport of particles and heat
across the confining magnetic field. Therefore stabilization of instabilities excited
by a beam of charged particles in plasmas is an important part of the more general
problem of controlling instabilities in magnetic traps.

Treatments of the beam–plasma instability of a bounded electron beam in
an unbounded plasma usually study the behavior of the growth rate as a function
of the parameters of the problem for one or two oscillation modes which have the
largest growth rate. This approach has permitted considerable insight into the
important role of transverse transport of the oscillation energy with the group
velocity out of the beam region in determining the behavior of the beam–plasma
interaction [3–8].

The control of instabilities, in particular their suppression, can be achieved
by means of intense high-frequency (HF) fields (e.g., [9, 10]). Based on existing
experimental and theoretical results it may be deduced that the effect of an in-
tense electromagnetic radiation on plasma may produce qualitative change in its
main properties (e.g., [10–14] and references therein). In particular, the plasma
dispersion characteristics can change to a considerable extent, the absorption of an
external (pump) electromagnetic field energy by plasma particles increases com-
paring to collision absorption, the possibility exists for parametric excitation of
plasma waves and also for stabilization of numerous plasma instabilities.

The stabilization effect of a uniform HF electric field on a two-stream (Bune-
man) instability in uniform (or nonuniform) unbounded (or bounded) plasma has
been investigated by Aliev and Silin [15] and Demchenko et al. [16]. They obtained
the dispersion equation for characteristic frequencies of electrostatic oscillations
excited by the relative motion of electrons and ions in an HF electric field. The
presence of a pump wave strongly modifies the dispersion equation of the Buneman
instability.

Consequently, the growth rate of instability is reduced in comparison with
the growth rate at vanishing external field amplitude.

The method described is used for the solution of the effect of an HF electric
field and the instabilities of a low-density electron beam passing through a plasma
waveguide in the presence of an HF electric field are investigated in [16].

Moreover, the instabilities resulting from the interaction of charged particle
beams with plasma were greatly stimulated by the circumstance that, apart from
their negative effects such as anomalous diffusion due to low-frequency oscillations
or limitations of the highest attainable currents in plasma accelerators and other
devices, there exists a great number of useful applications of these instabilities.

Resonant instabilities appear as a consequence of a wave–particle interaction
occurring when the phase velocity of particles becomes the same as drift velocity.
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These instabilities are in general overstable (e.g. trapping [17, 18], two-stream
[19, 20] and bump on tail instabilities [21]). Non-resonant instabilities (also called
bunching instabilities [22, 23]) do not depend so much on the behavior of the
particle distribution in the neighborhood of a particular speed (e.g., pinch [24, 25]
and mirror [26, 27] instabilities).

Instabilities are characterized by the properties of the plasma. Thus one
speaks of instabilities of a homogeneous or inhomogeneous plasma, collissional or
collisionless plasma etc.

Also, instabilities are named according to the discoverer (Buneman,
Čerenkov, etc.), according to the type of device in which the instabilities were
found (tokamak, pinch, etc.) or according to the energy source.

Parametric interaction of external HF electric field with an electrostatic sur-
face wave in an isotropic nonuniform plasma has been investigated in Ref. [17]
using a special method based on the separation of variables.

Investigation of beam–plasma interaction presents a great interest for the
development of effective methods via plasma instability, amplification and gener-
ation of electromagnetic waves, acceleration of charged particles in plasma, high
frequency heating of plasma, and so on ([12, 28] and [29]).

It has been shown [30] that dispersion equations describing parametric ex-
citation of surface waves at the boundary of isotropic plasma–vacuum to within
the eigenfrequency renormalization coincide with the equations that determine the
parametric excitation of volumetric waves in uniform unbounded plasma. Preced-
ing from this conclusion the method for investigation of parametric interaction
of external HF electrical field with electrostatic oscillations in isotropic bounded
nonuniform plasma has been proposed [17]. The method makes it possible to sep-
arate the problem into two parts. The “dynamical” part describes the parametric
build up of oscillations and corresponding equations within the renormalization of
eigenfrequencies coinciding with equations for the parametrically unstable waves
([7, 30] and [31]). Therefore it is of special interest to apply the separation method
to the solution of different problems involving parametric excitation of electrostatic
waves in bounded nonuniform plasma.

Contrary to recent works [16], we take into consideration the influence of
relativistic warm plasma electrons on the beam–plasma interaction in a cylindrical
plasma waveguide pumped by HF electric field.

2. The influence of HF electric field on the instability of a low-density
electron beam passing through a relativistic warm plasma waveguide

We assume that a uniform cold electron beam propagates along radially
nonuniform cylindrical relativistic warm plasma waveguide. The radius of the
beam R is supposed to coincide with the radius of the plasma cylinder (i.e. R = r).

Let us now assume that an electron beam of low density (εb = n0b/n0 ¿ 1)
is passing through quasineutral plasma with velocity ub0 . We shall also suppose
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that both plasma components are at rest (ue0 = ui0 = 0). We take the vector of
the external HF field Ep = E0 sin(ωt) to be oriented along the axis of the plasma
cylinder.

The “separation method” has been described [16, 32] in application to the
problem of parametric excitation of surface waves in a cold isotropic plasma. Here
we shall follow this paper. Representing the perturbations of velocity, density, and
electrical potential in the form ∂V α, ∂nα, Φ ∼ exp (i(mΨ + kz)) the linearized
set of hydrodynamic equations together with the Poisson equation can be reduced
to the form

∂2να1

∂t2
− iku0(1− γ)

∂να1

∂t
+ ηγνα1 = −mep

2

e2
eiAα

∑

β=b,e,i

νβ1

e2
β

mβ
eiAβ . (1)

Here, γ (relativistic effect) = (1− u2
0/c2)−1/2, ηγ = γk2V 2

th, α = e, i, or b and p

is a separation constant, and να1 is the temporal part of the density

Aα = (kuα0)t− aα sin(ω0t) and aα ≡ eαkE0

mαω2
0

≈ ae.

Assuming that the ions are at rest (ui0 ≡ 0) and that the frequency
of HF field is much greater than the eigenfrequency of the excited sur-
face waves (ω0 À ωSW ∼ ωPe), we may use the method of averaging
[33] on Eq. (1). Using the Jacobi–Anger formula [34], exp(±ia sin(ω0t)) =∑∞

m=−∞ Jm(a) exp(±imω0t) where Jm(a) are the Bessel functions, for values

(〈να1〉, 〈wi〉) = ω0
2π

∫ 2π/ω0

0
(να1 , wi)dt, then from (1) we have

d2〈νb1〉
dt2

+ εbp2 {〈νb1〉+ exp(i(kub)t) [〈νe1〉+ J0(a)〈wi〉]} = 0,

d2〈νe1〉
dt2

− i∆γ
d〈νe1〉

dt
+ ηγ〈νe〉

+p2 (〈νe1〉+ exp (−i(kub)t)〈νb1〉+ J0(a)〈wi〉) = 0,

d2〈wi〉
dt2

+
me

mi
p2 [〈wi〉+ (exp(−i(kub)t)〈νe1〉+ 〈νb1〉)J0(a)] = 0. (2)

Here, εb = n0b/n0, wi = me
mi

αi
αe

νi1 and ∆γ = ku0(1 − γ). The system of Eqs. (2)
coincides (if Vth = 0, γ = 1, n0b = 0, ω2

Pe
→ p2, ω2

Pi
→ (me/mi)p2) with the

system describing the HF stabilization of the two-stream instability in uniform (or
nonuniform) unbounded (or bounded) plasma ([15] or [16]).

If there is no externally injected beam (εb = (n0b/n0) = 0) then the system of
Eqs. (2) coincides with the system describing the HF stabilization of the Buneman
instability in a nonuniform bounded relativistic cold plasma [35, 36].

3. Solution of the time-dependent equations

According to Eqs. (2), plasma oscillations are then described by the disper-
sion equation
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(ω − ω2
LF)[(ω − kub)2(ω2 − ω2

HF − ηγ + ∆γ)

−εbp2ω2
Pe

(ω2 − ηγ + ∆γ)] = 0. (3)
Here

ω2
LF(p) =

me

mi
p2[1− J2

0 (a)],

ω2
HF(p) = p2

[
1 +

me

mi
J2

0 (a)
]

. (4)

In the case of vanishing electric field amplitude (E0 = 0), and Vth = 0, γ = 1,
then Eq. (3) agrees with the dispersion equation which describes the unstable
oscillations that are excited in a uniform unbounded (bounded) plasma by a low-
-density electron beam [1, 5]. We shall analyze Eq. (3) (as in [1, 5] in two cases).

3.1. Nonresonant case (kub 6≈ ωHF)

We have from Eq. (3):

ω = kub ±√εb
p[(kub)3 − ηγ + ∆γ)]1/2

[(kub)2 − ω2
HF − ηγ + ∆γ)]1/2

(5)

under the conditions

p2

[
1 +

me

mi
J2

0 (a)
]

> kub(kub + ∆γ − ηγ) > 0. (6)

The roots of Eq. (5) are complex and one of them corresponds to instability
with the growth rate

γNR =
√

εbp[(kub)2 − ηγ + ∆γ)]1/2

[ω2
HF(p)− (kub)2 − ηγ + ∆γ)]1/2

. (7)

At γ = 1 and Vth = 0 the result agrees with the result for cold plasma [14, 33].

3.2. Resonant case (kub ≈ ωHF)

The frequency of unstable oscillations can be represented in the form ω =
ωHF(p) + ∆ω, where

Re∆ω = −
ε
1/3
b p

[
1 + me

mi
J2

0 (a)
]1/6

24/3
[
1 +

(
2(ηγ −∆γ)/

(
p2

(
1 + me

mi
J2

0 (a)
)))]1/3

, (8)

γR = Im∆ω =
√

3
24/3

ε
1/3
b p

[
1 + me

mi
J2

0 (a)
]1/6

[
1 +

(
2(ηγ −∆γ)/

(
p2

(
1 + me

mi
J2

0 (a)
)))]1/3

. (9)

Here p is determined by the equation of the space part of the problem.
It follows from expressions (5)–(9) that the HF electric field has no essential

influence on the dispersion characteristics of unstable surface waves excited in a
plasma waveguides by a low-density electron beam. The region of instability only
slightly narrows and the growth rate decreases by a small parameter.
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The results obtained are in full agreement with the conclusion that an exter-
nal HF field may have a stabilizing effect on the electron beam–plasma interaction
in uniform (or nonuniform) plasma ([16, 32] and [36]). The relativistic warm
plasma reduced the growth rate.

We conclude that the growth rate of the electron beam–plasma interaction
decreases more in the relativistic warm plasma than in the previous works ([16, 32]
and [36]).

4. Solution of the spatial part of the problem
The main feature of the expressions (5), (7) and (9) consists in an existence

of a separation constant p, which enables us to consider the plasma boundaries.
To find an explicit expression for the constant p it is necessary to solve the

following differential equation (for detail see [15]):

1
r

d
dr

[
rε(p, r)

dΦ2(r)
dr

]
−

(
m2

r2
+ k2

)
ε(p, r)dΦ2(r) = 0. (10)

Here, ε(p, r) = 1 − ω2
Pe

(r)/p2. If the radial profile of the plasma density and
boundary conditions are specified, the solution of Eq. (10) gives us the desired
value of the separation constant p. The feature of Eq. (10) is that neither the
amplitude of HF electric field nor electron beam parameters enter into it. Therefore
Eq. (10) coincides with equation describing propagation of natural (free of external
influence) electrostatic surface waves in a nonuniform plasma cylinder (see e.g.
[16] and references therein). Let us suppose that plasma density is uniform and
the interface between plasma and vacuum is sharp. In such case the relations
determine the solution of Eq. (10)

Φ2(r < R) = C1Im(kr), Φ2(r > R) = C2Km(kr). (11)
Here, Im(kr) and Km(kr) are the modified Bessel functions and C1,2 are the
constants. Using the continuity condition of Φ2 and εdΦ2/dr at the boundary, the
following equation is found (see e.g. [16] and references therein)

ε0(p) + ηm(kR) = 0, (12)
with

ε0(p) = 1− ω2
Pe

p2
, ηm(kR) = −Im(kR)K ′

m(kR)
Km(kR)I ′m(kR)

, (13)

where the stroke means differentiation with respect to argument. Equation (12)
gives us the relation between the separation constant p, electron plasma frequency
ωPe and the axial wave number k:

p = ωPe(kR)1/2[Km(kR)I ′m(kR)]1/2. (14)
In the limiting case of small radius of plasma waveguide (kR ¿ 1), from (14) we
find

pm=0 = ωPe(kR)
[
1
2

ln
(

kR

2

)]1/2

, pm6=0 ≈ ωPe√
2

. (15)

For kr À m (“thick” waveguide) always ηm(kR) ≈ 1 and we have p = ωPe/
√

2.
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This equation is the same equation in cold plasma waveguide ([16, 32]
and [36]) i.e., the relativistic warm plasma waveguide has no effect on the space
part of the problem.

5. Conclusions

The paper deals with parametric excitation of the potential surface waves
in bounded nonuniform relativistic warm plasma by monochromatic HF electrical
field. It is shown that the problem can be reduced to the solution of the “temporal”
(parametric) and “stationary” (spatial) parts. The “temporal” part determining
frequencies and growth rates of unstable oscillations coincides with accuracy to
redefinition of natural frequencies with equations describing parametric resonance
in homogeneous plasma. Natural frequencies of oscillations and spatial distribution
of the amplitude of the self-consistent electric field are determined from the solution
of a boundary-value problem (“space” part) taking into account specific spatial
distribution of the plasma density. The method described is used to solve the
effect of HF field on the excitation of surface waves by an electron beam under
the development of instability of low-density beam passing through a cylindrical
relativistic warm plasma waveguide.

The method was used for the solution of the stabilization effect of a strong
HF electric field on beam–plasma interaction in a cylindrical relativistic warm
plasma waveguide. We solved the “temporal” (time-dependent) equations and
obtained the corresponding dispersion Eq. (3) in a cylindrical geometry, which
was analyzed for two cases: nonresonance instability (kub 6≈ ωHF) and resonance
one (kub ≈ ωHF). In both cases the frequency growth rates of the oscillations
are obtained (relations (7) and (9)). The separation constant p is obtained from
relation (14), the results are compared with the case when the external electric
field is absent (E0 = 0) and nonrelativistic cold plasma γ = 1, Vth = 0.

In conclusion it is shown that an HF electric field has no essential influence
on dispersion characteristics of unstable surface waves excited in a relativistic
warm plasma waveguide by a low-density electron beam. The region of instability
only slightly narrows and the growth rate decreases by a small parameter and this
result has been reduced compared to nonrelativistic cold plasma. Also, it is found
that the plasma electrons have not affected the solution of the space part of the
problem.
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