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A connection between the Weyl–Dirac theory and scale relativity the-

ory through the hydrodynamic models (relativistic and non-relativistic ap-

proaches) is established. In such conjecture, considering that the motions

of the microparticles take place on continuous but non-differentiable curves

i.e. on fractals, a Weyl–Dirac type equation was found. Some correspon-

dences with known hydrodynamic models, particularly BiaÃlynicki-Birula’s

approach, are analyzed. All these results reflect the fractal structure of the

space-time (a concept in agreement with the new ideas on the space-time).

PACS numbers: 04.20.Cv, 05.45.Df

1. Introduction

The way in which the geometry of space-time affects the dynamics of the
particle in the Weyl–Dirac (WD) theory is given by the covariant equation [1–6]:

∇µ∇µψ − 1
6
Rψ − 1

3
Λ|ψ|2ψ = 0, (1)

where ∇µ is the covariant differential, R is the Ricci scalar, Λ is the cosmological
constant, and ψ is the wave function associated with the particle. In fact, it is
considered [1–6] “a matter shell on a cosmological background described by the
field ψ which is also a source of the wave function. The law of parallel trans-
port common to this theory requires a vector to change not only in direction but
also in magnitude, after transport along a closed space-time loop. This result is
given by a quantum force due to the curvature of space-time and ψ, and con-
sequently, due to the loss of the microscopic distinguishability of the particle’s
trajectories. Since |ψ| is taken to represent the probability density, Eq. (1) en-
ables the quantum mechanical interpretation of the WD theory in the sense of
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Bohm [7]”. Using this equation, some interesting results arise [1–6]: (i) a geomet-
ric model with conformal invariance broken in the interior space; (ii) a geometric
guidance condition for the bubble at the microscopic scale; (iii) a new possibility
to consider non-local effects when the interior curved space-time can have acausal
properties, such as closed time-like curves; (iv) a transfer mechanism for energy-
-momentum between the thin shell and the Madelung fluid, etc. In Refs. [8–10] it
was shown that the wave–particle duality may be associated with a phase transi-
tion (of superconducting-normal state type). Moreover, the one-dimensional and
two-dimensional solutions of the WD equation in terms of the elliptic functions
were obtained, and a thermodynamics of the isolated particle was developed.

On the other hand, scale relativity theory (SRT) “is a new approach to un-
derstand quantum mechanics, and moreover physical domains involving scale laws,
such as chaotic systems. It is based on a generalization of Einstein’s principle of
relativity to scale transformations. Namely, one redefines space-time resolutions
as characterizing the state of scale of reference systems, in the same way as ve-
locity characterizes their state of motion. Then one requires that the laws of
physics apply whatever the state of the reference system, of motion (principle of
motion-relativity) and of scale (principle of scale-relativity). The principle of scale-
-relativity is mathematically achieved by the principle of scale-covariance, requir-
ing that the equations of physics keep their simplest form under transformations of
resolution” [11–15]. In such conjecture, considering that the motion of microparti-
cles takes place on continuous but non-differentiable curves, i.e. on fractals [16], it
was demonstrated that, in the topological dimension DT = 2 (for details see [16]),
the geodesics of the space-time are given by a Schrödinger type equation [13–15].
Moreover, a hydrodynamic model may be developed taken into account a complex
speed field [17].

In the present paper, a connection between the WD theory and SRT through
the hydrodynamic models is established. Also, some correspondences with known
hydrodynamic approaches are analyzed.

2. Hydrodynamic models in the Weyl–Dirac theory
The first hydrodynamic model of quantum mechanics is given by Made-

lung [18]. This approach has been developed and extended by Takabayasi [19–22]
and others [23–25] to non-relativistic spinning particles described by the Pauli
equation. A hydrodynamic model of relativistic quantum mechanics of the Dirac
particle was given by Takabayasi [26]. Recently, hydrodynamic model of the WD
theory has been treated in detail by BiaÃlynicki-Birula [27, 28]. This approach is
similar to that given by Takabayasi for the non-relativistic Pauli equation. The
hydrodynamic variables comprise one scalar field — the density — and two vector
fields — the velocity and momentum. The reduction in the number of variables to
four requires a quantization condition — the same as in the non-relativistic case
— that relates the curl of the momentum field to an axial vector built from the
velocity field.
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The advantage of all hydrodynamic models of the quantum mechanics is that
they “enable us to visualize quantum mechanical processes in terms of the familiar
variables of classical hydrodynamics. Since the number of hydrodynamic variables
always exceeds the number of variables needed to describe the wave function, it is
necessary to impose an auxiliary condition on the hydrodynamic variables” [27, 28]
i.e. a quantization condition.

In such a conjecture, our hydrodynamic models of WD theory differs from
the one developed by BiaÃlynicki-Birula [27, 28], by introducing a complex speed
field, both in non-relativistic and relativistic approach. Then, a connection with
the fractal space-time can be established.

In the weak-field approach (WFA) of the WD theory, Eq. (1) takes the form

ψ0 − 1
6
Rψ0 − 1

3
Λ0|ψ0|2ψ0 = 0, (2)

where R0, Λ0, and ψ0 are the new parameters in the WFA approach (for more
details — the WFA method, the physical significations of R0, Λ0, and ψ0 param-
eters, etc. see Refs. [5, 6]). With ψ0 = Ae(iS/h̄), Eq. (2) leads to the system

∂ν(A2∂νS) = 0, (3a)

∂νS∂νS +
h̄2

6
(R0 + 2Λ0A

2)− h̄

(
A

A

)
= 0, ν = 1, 4 (3b)

with A and S the amplitude and the phase of the wave function, respectively, and
h̄ the reduced Planck constant.

One cannot define the velocity quadri-vector uν through the relation

uν = m−1
0 ∂νS, (4)

because the condition

uµuµ = −c2 (5)
is not generally verified. However, introducing the proper fluctuation mass M0

through the relation
(

M0c

h̄

)2

=
1
6
(R0 + 2Λ0A

2)−
(

A

A

)
(6)

and using the quadri-vector speed,

uµ = M−1
0 ∂νS, (7)

the condition (5) through the Hamilton–Jacobi type Eq. (3b)

∂νS∂νS + M2
0 c2 = 0 (8)

is always satisfied.
Now, through the quadri-vector uν (7) and the density

ρ = A2 M0

m0
(9)

from Eqs. (3a,b) a hydrodynamics in the WD theory can be built.
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First Eq. (3a) with jν = ρuν , i.e.

∂νjν = 0 (10)
corresponds to the law of conservation of the current density jν .

Equation (8) under the form

∂νS∂νS = M0uν∂νS = M0∂τS = −M2
0 c2 = −E0M0, (11a)

E0 = M0c
2, (11b)

where E0 is the proper fluctuation energy and τ the proper time, by applying the
4-dimensional gradient, ∂ν , becomes

∂τ (M0uν) = −∂ν(M0c
2). (12)

From this point, through multiplication with ρ and considering the identities

ρ∂τ (M0uν) = ∂µ(ρM0uµuν), (13a)

−ρ∂ν(M0c
2) = ∂µ

[
h̄2ρ

2M0
∂µ∂ν ln A− m0Λ0h̄

2ρ2

12M2
0

δµν

]
, (13b)

we obtain the conservation law of energy-momentum tensor,

∂µTµν = 0 (14)
with

Tµν = ρM0uµuν − h̄2ρ

2M0
∂µ∂ν ln A +

m0Λ0h̄
2ρ2

12M2
0

δµν . (15)

The following conclusions can be drawn. (i) Any particle is in a permanent in-
teraction with the “subquantum level” characterized by the ρ density (9) and
the quantum potential Q ≡ M0c

2. (ii) As a result of this interaction, the particle
acquires the proper fluctuation mass M0 and the proper fluctuation energy, respec-
tively. (iii) The “subquantum level” is identified with a quantum fluid (WD fluid)
described by Eqs. (10) and (14). (iv) The correspondence with Klein–Gordon
fluid is obtained for

Λ0 = 0,
(m0c

h̄

)2

=
R0

6
. (16a,b)

(v) Applying to the “scalar potential” [29]

I = − ln ψ0 (17)
the 4-operator ih̄M−1

0 ∂ν , the 4-generalized speed field is obtained

Vν = uν + iνν (18)
with

νν = − h̄

M0
∂ν ln A. (19)

Then, the energy-momentum tensor (15) takes the form

Tµν = ρM0uµuν +
h̄ρ

2M0
∂µ(M0νν) +

m0Λ0h̄
2ρ2

12M2
0

δµν . (20)

Therefore, the potential (17) becomes not only a source for the energy-momentum
tensor through the 4-generalized speed field, but also for the wave–particle duality.
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The correspondence with the non-relativistic hydrodynamic model is accom-
plished for S = S′ −m0c

2t, where S′ is the classical action and m0 the rest mass
of the test particle. Then, using the identities,

∂tS = ∂tS
′ −m0c

2, ∂ttS = ∂ttS
′,

∂νS∂νS = (∇S′)2 − c−2(∂tS
′ −m0c

2)2 ≈ (∇S′)2 + 2m0∂tS
′ −m2

0c
2,

S ∼= ∆S′, A ∼= ∆A,

∂ν(A2∂νS) = ∇(A2)∇S′ − c−2(∂tS
′ −m0c

2)∂t(A2) + A2∆S′

≈ (∇A2)∇S′ + m0∂t(A2) + A2∆S, (21a–f)
it follows that

∂t(m0A
2) +∇(A2∇S′) = 0, (22a)

2m0∂tS
′ + (∇S′)2 −m2

0c
2 +

h̄2

6
(R0 + 2Λ0A

2)− h̄2(∆A/A) = 0, (22b)

or, through the speed fields

ν = m−1
0 ∇S′, u = −(h̄/2m0)∇ ln ρ, ρ = A2 (23a–c)

and the application of ∇ operator to Eq. (22b),

m0(∂tν + ν · ∇ν) = −∇(U + Q), ∂tρ +∇ · (ρν) = 0 (24a,b)
with

U =
Λ0h̄

2

6m0
ρ + U0, U0 =

1
2m0

(
R0h̄

2

6
−m2

0c
2

)
, (25a,b)

Q = − h̄2

2m0

∆ρ1/2

ρ1/2
= −(h/2m0)∇ · u− (m0u

2/2). (25c)

The following conclusions can now be drawn. (i) Any particle is in a perma-
nent interaction with the “subquantum level” through the quantum potential Q.
(ii) The “subquantum level” is identified with a non-relativistic quantum fluid
(non-relativistic WD fluid) described by the hydrodynamic Eqs. (24a,b). (iii) The
quantum potential depends only by the imaginary part of the complex velocity,

V = − ih̄
m0

∇(lnψ0) = ν + iu. (26)

(iv) The wave function of ψ0(r, t) is invariant when its phase changes by an integer
multiple of 2π. Indeed, Eq. (23a) gives∮

m0νdr =
∮

dS′ = h̄

∮
ds′ = nh, n = 1, 2, . . . (27)

a condition of compatibility between the WD non-relativistic hydrodynamic model
and the wave mechanics (WM). This result is in agreement with the opinions of
BiaÃlynicki-Birula [27, 28].

(v) In the ground states, i.e. for the quantum numbers n = 1, l = m = 0,
the state density is

ρ(r) =
1

πr3
0

e−2r/r0
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— for details see [15, 17]. Substituting this result in the quantum potential ex-
pression (25c), i.e.

Q(r) = − h̄2

2m0
√

ρ

(
d2√ρ

dr2
+

2
r

d
√

ρ

dr

)
= − h̄2

2m0r0

(
1
r0
− 2

r

)
,

we obtain the attractive force

F (r) = −∂Q

∂r
= − h̄2

m0r0

1
r2

.

Consequently, the “subquantum level” becomes a force field source of an attractive
type.

3. A connection between the Weyl–Dirac theory
and scale relativity theory

The complex speed fields given through the relativistic and the non-
-relativistic hydrodynamic approach (see the relations (18) and (26)) indicate (in
our opinion), according to [11–14], a possible connection between the WD theory
and SRT. Then, the motions of the microparticles take place on continuous but
non-differentiable curves, i.e. on fractals. The consequences of this assumption
will be analyzed.

Let P (x1, x2) be a point of the fractal curve and let us consider a line which
starts from this point and let Q be the first intersection of this line with the
fractal curve. We denote by x1 + dX1, x2 + dX2 the coordinates of Q, thus PQ

is a vector of components dX1, dX2. We denote by dXi
+ the components of the

vector PQ for which dX1 > 0, hence they are at the right of the dotted line and
by dXi

− the case when dX1 < 0, such as is the case for the vector PQ′ — see
Fig. 1. Considering all the lines (segments) which start from P , we denote the
average of these vectors by dxi

±, i.e.

〈dXi
±〉 = dxi

± (i = 1, 2). (28)
Therefore we can write

dXi
± = dxi

±+dξi
±, (29)

where

〈dξi
±〉 = 0. (30)

Details on the averaging process are given in Refs. [10, 12–14]. Here dxi
± are the

left and right differentials of the classical variables, and dξi
± describe the fractal

characteristics. From (29) we obtain the speed field
dX±
dt

=
dx±
dt

+
dξ±
dt

. (31)

We denoted by (dx+/dt) = ν+ the “forward” speed and by (dx−/dt) = ν− the
“backward” speed.

We have no way to favor ν+ rather than ν−. Both choices are equally
qualified for the description of the physics laws. The only solution to this problem
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Fig. 1. The continuous curves which are not fractals but have points where they are

not differentiable.

is to consider both the forward (dt > 0) and backward (dt < 0) processes together.
Therefore, we can introduce the complex speed [10, 12–14]:

V =
ν+ + ν−

2
− i

ν+ − ν−
2

=
dx+ + dx−

2dt
− i

dx+ − dx−
2dt

, (32)

where (ν+ + ν−)/2 may be considered as classical speed, the difference between
them, i.e. (ν+ − ν−)/2 is the fractal speed.

From (32) the operator results

δ =
d+ + d−

2dt
− i

d+ − d−
2dt

. (33)

Let us suppose that the motion of microphysical objects takes places on
continuous but non-differentiable curves immersed in a 3-dimensional space. Let
us also consider a function f(X, t) and the following Taylor series expansion up to
the first order

df = f(Xi + dXi, t + dt)− f(Xi,dt) =
(

∂

∂Xi
dXi +

∂

∂t
dt

)
f(Xi, t) (34)

with Xi (i = 1, 3) the components of the position vector X of a point on the curve.
Using the notations, dXi

± = d±Xi, the forward and backward average values of
this relation take the form

〈d±f〉 =
〈

∂f

∂t
dt

〉
+ 〈∇f · d±X〉. (35)

We make the following stipulations: the mean values of the function f and
its derivatives coincide with themselves, and the differentials d±Xi and dt are
independent, therefore the averages of their products coincide with the product of
average (for other details see [11–14]). Then (35) becomes

d±f =
∂f

∂t
dt +∇f〈d±X〉 (36)

so that, using (29) in the form (28),

d±f =
∂f

∂t
dt +∇f〈d±x〉. (37)
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In the previous works [10–14] a supplementary term in the Taylor expansion was
considered. Then, the non-zero expressions, 〈dξi

±dξl
±〉 had appeared, and fractal

dimension DF (for details see [16]) must be considered. In relation (36), the zero
term dξi

± appears and fractal dimension DF is not present.
If we divide by dt, relation (36) is reduced to
d±f

dt
=

∂f

∂t
+ ν±∇f±. (38)

Now, let us calculate (δf/dt). Taking into account (33) and (38), we have
δf

dt
=

1
2

[
d+f

dt
+

d−f

dt
− i

(
d+f

dt
− d−f

dt

)]
=

1
2

(
∂f

∂t
+ ν+∇f

)

+
1
2

(
∂f

∂t
+ ν−∇f

)
− i

2

[(
∂f

∂t
+ ν+∇f

)
−

(
∂f

∂t
+ ν−∇f

)]

=
∂f

∂t
+

(
ν+ + ν−

2
−i

ν+ − ν−
2

)
∇f (39)

or using (32)
δf

dt
=

∂f

∂t
+ V · ∇f. (40)

This relation also allows us to give the definition of the non-differentiable operator:
δ

dt
=

∂

∂t
+ V · ∇. (41)

We are applying now the principle of scale covariance, and we are postulating
that the passage from classical (differentiable) mechanics to the non-differentiable
mechanics can be introduced by replacing the standard time derivative d/dt by
the complex operator δ/dt (for details on the method see Refs. [10–14]). As a
consequence, we are able to write the Newton equation in its covariant form

δV

dt
=

∂V

∂t
+ V · ∇V = −

(
U

m0

)
. (42)

This means that the non-differentiability manifests only through the complex speed
field V . The fractal dimension does not appear explicitly, but implicitly only by
means of the V field.

From here and using the operational relation, V · ∇V = ∇(V 2/2) − V ×
(∇× V ), we obtain the Euler type equation in the non-differentiable space-time

δV

dt
=

∂V

∂t
+∇

(
V 2

2

)
− V × (∇× V ) = −

(
U

m0

)
. (43)

If the microparticle motion is irrotational, i.e. Ω = ∇ × V = 0, we can
choose V of the form

V = ∇φ = −i
h̄

m0
∇(ln ψ0), (44)

— see also the relation (26), with φ the complex speed potential. By substituting
(44) in (43) with U given by (25a,b), and integrating it, up to an arbitrary phase
factor which may be set to zero by a suitable choice of the phase of ψ0, a WD type
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equation in the fractal space-time is obtained

ih̄∂tψ0 = − h̄2

2m0
∆ψ0 +

Λ0h̄
2

6m0
|ψ0|2ψ0

+
1

2m0

[
R0h̄

2

6
−m2

0c
2 +

h̄2

4m2
0

∆(lnψ0)
]

ψ0. (45)

ψ0 becomes simultaneously wave-function and speed potential and h̄/2m0 defines
the differential–non-differential transition, i.e. the transition from the explicit scale
dependence to scale independence.

4. Conclusions

The main conclusions of the paper are the following. (i) Hydrodynamic
models of the WD theory in the relativistic and non-relativistic approaches are
established. (ii) Any particle is in a permanent interaction with a “subquantum
level” through a quantum potential. (iii) The “subquantum level” is identified
with a quantum fluid described by the laws of conservation of the current den-
sity and the momentum, respectively. (iv) The quantum potential depends in the
non-relativistic case only by the imaginary part of the complex speed. (iv) A con-
nection between the WD theory and SRT through the WD hydrodynamic model
in the non-relativistic approach was found. In such conjecture, considering that
the motions of the microparticles take place on continuous but non-differentiable
curves, i.e. on fractals, a WD type equation is obtained.

All these results reflect the fractal structure of the space-time, a concept in
agreement with the new ideas on the space-time [30, 31].
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