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We discuss the possibility of light control by means of light diffrac-

tion by space charge waves which are the periodic domain trains induced at

some circumstances in GaAs Gunn effect diode. The two possible regimes

of the proposed device are considered: the first one which is analogous to

the Bragg diffraction in case of light-acoustic diffraction and the other one,

which we call “intermediate”, since the parameter Q which distinguishes the

Raman–Nath (Q < 1) and the Bragg diffraction (Q > 10), in this case is

≈ 1 (actually, only bit smaller than 1). Among the advantages of this hypo-

thetical device are the simpler control of operation and perhaps, possibility

to couple it with the waveguides and switchers for surface electromagnetic

waves and other miniaturized photonic circuits.

PACS numbers: 42.25.Fx, 42.79.Dj, 42.79.Gn, 42.82.Et, 42.82.Fv

1. Introduction

So far in most of the light deflectors and directional couplers the acoustic
surface waves were used in order to get modulation of the dielectric susceptibility.
Nevertheless, the search for other possibilities of light control has never ceased
(see, for example, the recent paper [1] and the references cited therein). We would
like to attract attention to another possibility: the modulation, similar to that in
case of surface acoustic waves, can be achieved also in thin semiconductor films by
means of the induced space charge wave. The space charge wave (SCW) is nothing
else but the domains of higher and lower charge densities alternating each other
and moving with drift velocity. The well-known example of such SCWs are the
plasmons induced in semiconductor plasma [2]. Another type of charge movement
which looks like moving waves are the periodic domain trains induced at some
circumstances in GaAs Gunn effect amplifier [3, 4].
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Since the dielectric susceptibility ε is proportional, to the first approximation,
to the squared plasma frequency, it is clear that one can modulate ε by producing
the moving domains of lower and higher charge densities, that is, by inducing the
SCW. In this way one can make the light control possible due to light diffraction
by SCW, just like it is achieved in deflectors and directional couplers based on
surface acoustic waves.

In this paper we propose the model and discuss the theory of such device
based on GaAs Gunn effect diode in which multiple domain regime is to occur. We
consider light diffraction by modulation of semiconductor dielectric susceptibility
caused by space charge wave and distinguish two regimes, the Bragg diffraction
and another one, which is intermediate between the Bragg and the Raman–Nath
diffraction.

2. The model and basic equations
of light diffraction by SCW

Let us argue first that light diffraction by SCW is possible. The point is
that sometimes one can encounter the statement that light wave cannot interact
with plasmons [5], since plasma oscillations, just like the other types of SCW,
are longitudinal, while electromagnetic waves are transversal. This statement,
being correct for electromagnetic waves in free space, is no longer valid in case
of waveguides where both types of waves, transverse electric (TE), as well as
transverse magnetic (TM) can propagate. We assume two possibilities to occur:
either the semiconductor sample in which SCWs are induced, is inserted into the
waveguide where TM electromagnetic wave propagates (such wave by definition,
has the component of electric field which is the projection of E vector onto the
SCW wave vector and hence, such electromagnetic wave can interact with SCW),
or the electromagnetic wave is incident on the sample at such an angle that there
is a non-zero projection of E vector of the electromagnetic wave onto the plane in
which the wave vector of SCW lies.

In most of the cases in the Gunn effect device only a single field domain
is generated at a time and hence, this travelling domain hardly can be called
“wave” or at least, harmonic-type wave. However, at some circumstances the
multiple domains can also be generated [3, 4] and this operating regime to some
approximation can be treated in terms of harmonic wave process.

Let us suppose we have distributed semiconductor structure in which moving
multiple Gunn domains are generated and which is represented schematically in
Fig. 1. “Distributed” in this context means that the sample length in y-direction
(Ly) is much greater than in x-direction (Lx): Ly À Lx. Let us notice that
such distributed structures were already discussed in the literature [6], though
in entirely different context. We assume that the SCW associated with periodic
domains moves in x-direction and can be characterized by the wave vector k0

and frequency Ω . In the simplest case the carriers concentration accompanying
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Fig. 1. Schematic representation of distributed Gunn diode structure: 1 — moving pe-

riodic high electric field domains accompanied by space charge wave are shown schemat-

ically; 2 — light beam incident on the semiconductor and characterized by k and ω,

3 — space charge wave propagates along x-axis and is characterized by k0 and Ω . In

the inset the reference frame is depicted in greater scale; E and H components of TM

electromagnetic wave are shown; Exy stands for the E vector projection onto (x, y)

plane; it makes the angle θ0 with y-axis.

this SCW can be represented as n = n0 + n1 cos(Ωt − k0x). Here n0 is the
equilibrium electron concentration (in the absence of the field domains) and n1

is the excess concentration due to the high field domains. Clearly enough, the
wave vector and the frequency are related by k0 = Ω/vd, where vd is the drift
velocity. The real part of the semiconductor dielectric susceptibility for the opti-
cal frequencies can be estimated roughly as ε(∞) ∼ 1 − ω2

p/ω2, where ωp is the
plasma frequency. Since plasma frequency is proportional to n1/2, it is clear that
the modulation of space charge density will lead to the dielectric susceptibility
modulation ε = ε0 + ∆ε cos(Ωt − k0x). If the electromagnetic wave is incident
on the semiconductor layer at some angle to the y-axis, it can be diffracted by
this modulation wave just as it occurs in the case of light diffraction by ultrasonic
vibrations. However, there is also an essential difference between diffraction by
space charge modulation and that caused by acoustic wave. At the analysis of
light diffraction by ultrasonic vibrations, one usually assumes the free charge car-
riers to be absent in the dielectric and hence the density of charge carriers (n) and
currents (j) are supposed to be zero. Curiously enough, in metal optics, where
neither n nor j are equal to zero, they are supposed to be zero, too. The point is
that any initial perturbation of space charge n0 decays exponentially with respect
to time as n(t) = n0 exp(−t/τd), where τd = ε/σ is termed dielectric (or Maxwell)
relaxation time, σ is the sample conductivity. Since metal conductivity is very
high, dielectric relaxation time is much less than the characteristic time of the
changes of field amplitude for optical frequencies. Indeed, in metals τd is about
10−18−10−19 s, that is, much smaller than 2π/ω ∼ 10−15 s for optical frequencies.
The last one makes it possible to assume n and j to be equal to zero, too. But in
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semiconductors the situation is quite different: neither n nor j are equal to zero
and τd is about 10−12 s, which is greater than 2π/ω for optical frequencies. It
would be logically unfair also to assume n equal to zero, since the modulation of
dielectric susceptibility is just determined by the space charge modulation. It is
impossible therefore in our case (at least, without preliminary analysis) to suppose
the charge and current densities to be zero in the initial Maxwell equations.

Let the plane linearly polarized electromagnetic wave E = E0 exp(i(ωt−kr))
be incident on the semiconductor layer of the structure in question. Let us suppose
k = (kxy, kz) where kxy = (kx, ky). Let us also suppose that kxy makes an angle θ0

with y-axis as it is shown in Fig. 1. Also let us assume E0 = (E0xy, E0z) where E0z

is perpendicular to the xy-plane. Since we suppose the density of charge carriers
to be independent of y- and z-space variables, we can consider only x-component
of electromagnetic field, Ex = E0x exp(i(ωt − k sin θ0x)). As a result, we have to
consider the Maxwell equations of the form (from now on we drop for simplicity
the indices x and xy altogether):

∇×E = −c−1 ∂B

∂t
· ∇B = 0.

∇×B = c−1 ∂D

∂t
+

4π

c
j, ∇D = 4πρ.

where, as usual, ρ and j are the charge concentration and current density, respec-
tively, ρ = en, and n stands for the electron concentration.

Some comments have to be added here: in the subsequent analysis we
suppose that the frequency of the space charge wave, Ω , is not greater than
a few MHz. Therefore, the electrons are supposed to be able to follow the changes
of the field amplitude. On the other hand, since the semiconductor conductivity is
much smaller than the metal conductivity and drift velocity is much smaller than
light velocity, we can assume the term 4πj/c to be equal to zero in the Maxwell
equations, incorporating the directed charge displacement in the form of travelling
wave by means of ρ = ρ(Ωt− k0x). In this way one can satisfy the charge conser-
vation law ∂ρ/∂t +∇j = 0, because the condition 4πj/c ≈ 0 does not necessarily
imply ∇j = 0.

Using the standard procedure for deriving the wave equation and taking into
account that ∆ε ¿ ε0 and λ/Λ < 1 (λ and Λ are the wavelengths of the incident
light and that of the SCW, respectively), we get

∂2E

∂x2
+

∂2E

∂y2
− 1

c′2
∂2

∂t2

(
1 +

∆ε

ε0

)
=

4π

ε20
ρ∇ε− 4π

ε0
∇ρ ≡ F(ε0, ε, ρ), (1)

where c′ = c/
√

ε.
Let us search for the solution to (1) in the form of a series of plane waves

corresponding to the different diffraction orders [7]:
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E(x, y, t) =
∞∑

n=−∞
Vn(y) exp (i[(ω + nΩ)t− (k sin θ0 + nk0)x− ky cos θ0]). (2)

Here Vn(y) is the amplitude of the n-th diffraction beam of the frequency
ω + nΩ . Using (2), after some manipulations (see Appendix) one arrives at the
next equation for Vm(y):

d2Vm

dy2
− 2i cos θ0

dVm

dy
+ 2kβm cos θ0Vm

= −κ(Vm+1 + Vm−1) + Fm(ε0,∆ε, ρ) exp(ik cos θ0y), (3)
where

βm = [2mkk0(v/c′ − sin θ0) + m2k2
0(1− v2/c′2)]/2k cos θ0,

κ =
∆ε

2ε0
k2(1−mΩ/ω)2, ω = c′k, Ω = vdk0.

One can find the explicit formula for Fm in Appendix.
It is noteworthy that (3) is absolutely analogous to the corresponding equa-

tion describing the light diffraction by acoustic wave [8] and differs from the last
one only by the term containing Fm in the right-hand side of Eq. (1), as it could
be expected.

3. Bragg diffraction by space charge wave

Let us analyse at first the special case of the negligible amplitude of the
second derivative d2Vm/dy2. Indeed, if ∆ε/ε0 ¿ 1, then Vm varies relatively slow
with respect to y and d2Vm/dy2 is negligible compared to the other terms in (3).
As a result, we have the next equation to be analysed

dVm

dy
+iβmVm =

i
2k cos θ0

[Fm(∆ε, ε0, ρ1, ρ0) exp(ik cos θ0y)

−(∆ε/ε0)k2(1 + mΩ/ω)2(Vm+1 + Vm−1)], (4)
where k = ω/c′. Supposing mΩ/ω ¿ 1 (which is often the case), for small m the
solution to (4) can be expressed as

Vm(y) =
{

Vm(y0) +
i

2k cos θ0

∫ y

y0

[Fm exp (ik cos θ0y
′

−∆ε

ε0
k2[Vm+1(y′) + Vm−1(y′)]

]
exp(iβmy′)dy′

}
exp(−iβmy),

where Vm(y0) is the boundary value for the field amplitude of the m-th diffracted
beam.

To compare the obtained result with the corresponding expression for the
optical-acoustic diffraction, one has to make the same additional simplifications
as in the theory of light diffraction by ultrasonic vibrations [8]. Let us assume
therefore that not only the modulation of dielectric constant caused by space



840 I. Tralle

charge wave is small but that the θ0-angle is small, too. Formally this is reduced
to the condition | ∫ y

y0
∆εkdy′/ε cos θ0| ¿ 1. Then Vm+1 ¿ Vm and hence we arrive

at the formulae

Vm(y) ≈
{

Vm(y0) +
i

2k cos θ0

∫ y

y0

[Fm exp(ik cos θ0y
′)

−∆ε

ε0
k2Vm−1(y′)

]
exp(iβmy′)dy′

}
exp(−iβmy), (5)

for m ≥ 0, and

Vm(y) ≈
{

Vm(y0) +
i

2k cos θ0

∫ y

y0

[Fm exp(ik cos θ0y
′)

−∆ε

ε0
k2Vm+1(y′)

]
exp(iβmy′)dy′

}
exp(−iβmy), (6)

for m < 0.
Now let us make some estimates. Let us assume ω = 1.5 × 1015 Hz, Ω =

6 × 109 Hz and the uniform equilibrium electron concentration in GaAs (in the
absence of the space charge wave) to be 1014 cm−3. Let it be the peak value of
electron concentration within the high field domains ≈ 1016 cm−3, which seems to
be reasonable. Then the ratio ∆ε/ε0 is about 2.8×10−6. Taking vd ≈ 107 cm s−1,
one has Λ = 2π/k0 ≈ 0.01047 cm; so, the assumption which was made at the
derivation of previous formulae seems to be justified. If we suppose the Bragg
diffraction to occur and that only V0 and V±1 are nonzero just like in case of light
diffraction by acoustic waves [7], then the quantity β±1 can be represented as

β±1 = ± k0

cos θ0
(sinα±1 − sin θ0),

where

sinα±1 = vd/c′ ∓ (k0/2k)(1− v2
d/c′2).

If vd/c′ were zero, α±1 would be exactly equal to the Bragg angle at the light
diffraction by space charge wave. Since vd/c′ ≈ 0.0011, the last relation can be
rewritten as sin α±1 ≈ sin θB = ΩΛ/(2vd

√
ε), where θB is the Bragg angle and λ

stands for the light wavelength.
Let us introduce, as in case of optical-acoustic diffraction, the “interaction

length” L corresponding to the light beam–acoustic wave interaction domain, so
that 0 ≤ y ≤ L and let y be in the [−L/2, +L/2] interval. Let us assume also
∆ε to be independent of y inside the interval and equal to zero outside. Using
(5) (or (6)), the formula for α±1 above and the standard boundary conditions
V0(y0) = V0, Vm(y0) = 0 for m 6= 0, the amplitude V1 can be expressed as

V1 =
i

k cos θ0
exp

(
ik0y

sin θ0 − sin α

cos θ0

)
sin

(
1
2L(sin θ0 − sin α)/ cos θ0

)

k0(sin θ0 − sin α)
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×
(
F1 − ∆ε

ε0
k2V0

)
,

where we dropped the ±1 subscripts of α.
The relative intensity of the diffracted beams is of the form

|V1/V0|2 =
∣∣∣∣F1 − ∆ε

ε0
k2V0

∣∣∣∣
2 sin2

(
1
2L(sin θ0 − sin α)/ cos θ0

)

k2
0(sin θ0 − sin α)2

.

For F1 = 0 (that is, for n, ρ, and ∆ε equal to zero) the last formula reduces exactly
to the corresponding expression for optical-acoustic diffraction [8].

4. “Intermediate” diffraction regime

In the theory of light diffraction by ultrasonic waves, the parameter Q =
2πLλ/

√
εΛ2 characterizing diffraction, very often is used. It is commonly used

to believe that if Q > 10, the diffraction grating produces only one diffracted
beam, while if Q < 1, the grating produces many diffraction orders. The first case
corresponds to the Bragg regime which in fact is the same as that considered in
previous section, while the other one corresponds to the Raman–Nath regime.

The point however is that, first, drift velocity vd usually is much greater than
the sound velocity in a semiconductor and, second, L in the formula for Q for the
distributed Gunn effect structure (remember, in our case L ≤ Ly), in spite of the
condition Ly À Lx, most probably cannot be greater than 1 cm. As a result, the
condition Q > 10 hardly can be achieved in this case as well as the opposite one,
Q < 1. At the typical values of the parameters which enter the formula for Q, the
last one is about ≈ 1 (in fact, a bit smaller than unit). Taking these arguments
into account, one should consider more general situation and analyse Eq. (4) and
its solutions without an additional assumption that the amplitudes Vm decrease
rapidly with m increasing.

Let us introduce new parameter ζ by means of ζ = κ/k cos θ0 and new
variable χ by means of χ = 2ζy. Then Eq. (4) can be rewritten as

2V ′
m + (Vm+1 + Vm−1) = (iβm/ζ)Vm

+ [iFm(ε0, ε1, ρ)/ζk cos θ0] exp(ik cos θ0y). (7)
And again, the difference between this equation and that one appearing in

the theory of light-acoustic diffraction is only due to the term containing Fm in
the right-hand side of (7). Following Raman and Nath, most of the people who
dealt with this problem, set the term (iβm/ζ)Vm equal to zero in the equation
above. In this way it is possible to reduce Eq. (7) to the recurrence relation for
the Bessel functions of the first kind [9], since there is no term containing Fm

in the right-hand side in case of light-acoustic diffraction and one can search for
the real-valued solutions to this equation. However, as it was argued in Sect. 2,
it would be logically inconsistent and incompatible with our approach to set Fm

equal to zero. Hence, there is no much sense to assume (iβm/ζ)Vm term to be
equal to zero, too. Now Eq. (7) with non-zero Fm and (iβm/ζ)Vm terms becomes
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complicated differential-recurrence equation which can be analysed numerically.
It is beyond the scope of the present paper, however. Here instead, we carry out
the subsequent analysis in somewhat different way.

Let us notice first that the functions Z(x) defined by means of the recurrence
relation

Zm+1 − Zm−1 = −2
dZm

dx

are the Bessel functions which more frequently are defined as the solutions to the
next differential equation [10]:

x2 d2y

dx2
+ x

dy

dx
+ (x2 −m2)y = 0.

Let us notice now that this equation is of the second order, and therefore it
has two linearly independent solutions. When m is an integer, the general (real)
solution is of the form [10]:

Zm ≡ C1Jm(x) + C2Ym(x),

where Jm is the Bessel function of the first kind, while Ym is the Bessel function
of the second kind. The complex solutions to the equation above are given by the
Hankel functions H

(1,2)
m = Jm(z) ± iYm(z), where plus sign corresponds to H

(1)
m ,

the Hankel function of the first kind, while minus sign corresponds to the H
(2)
m ,

the Hankel function of the second kind. The last one suggests that we could search
for the solution to our problem in the class of the Hankel functions.

Indeed, if we suppose Vm(χ) ≡ Jm(χ)± iYm(χ), then Eq. (7) can be reduced
to much simpler equation of the form

Vm = −i
2ζ

βm
Vm−1 − [Fm(ε0, ε1, ρ)/kβm cos θ0](cos νχ + i sin νχ),

where ν = (2ζ)−1k cos θ0 and hence, Jm(χ) and Ym(χ) should obey the following
equations for H

(1)
m :

Jm(χ) = (2ζ/βm)Ym−1(χ)− Re[f ],

Ym(χ) = −(2ζ/βm)Jm−1(χ) + Im[f ] (8)
and

Jm(χ) = −(2ζ/βm)Ym−1(χ)− Re[f ],

Ym(χ) = (2ζ/βm)Jm−1(χ) + Im[f ] (9)
for H

(2)
m . Here Re[f ] and Im[f ] stand for the real and imaginary parts of the

complex-valued function f :

Re[f ] = [A cos(k cos θ0y)−B sin(k cos θ0y)](ζ/βm),

Im[f ] = [B cos(k cos θ0y) + A sin(k cos θ0y)](ζ/βm),

where
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A ≈ 2πk2
0ρ1Ω
ε0

γ

(
1
α1

+
1
α2

)
, B ≈ πk2

0ε1ρ1Ω
ε20

γ

(
1
α3

− 1
α4

)
,

while γ and αi (i = 1 . . . 4) are defined in Appendix. Here we also took into account
that ∆ε ¿ ε0 and ρ1 > ρ0. Each pair of these four equations (8), (9) can be
considered as the nonlinear equations for determining y. At first sight this system
of equations might appear to be overdetermined. Let us remember, however, that
Eqs. (8) and (9) are not the systems of algebraic equations but the systems of
transcendental ones. Most probable, they cannot be satisfied simultaneously for
many m’s and a single y (“interaction length”), but perhaps, they can be satisfied
approximately for some m’s and different y’s, each for its own m. This conjecture
turns out to be valid, as it is seen in Figs. 2, 3, where some results of our calculations
are shown.

Fig. 2. (a) Numerical solution of Eq. (8) in the class of the Hankel functions of the

first kind, H
(1)
m ; m = 2, θ0 = 0.01 rad, y is given in cm; (b) the same is for Eq. (9) (for

the Hankel functions of the second kind), H
(2)
m ; m and θ0 are as in the previous case.

Fig. 3. (a) Solutions for H
(1)
m , m = 4, θ = 0.03 rad; (b) the same is for H

(2)
m .

In these figures the plotted curves represent the right-hand (or left-hand)
sides of Eqs. (8), (9), if all the entries, except zeros, are in one side of the equation.
Then the points of intersection of the curves with y-axis correspond to the solutions
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of each equation in a pair ((8) or (9)), that is, the value of “interaction length”
at given m and the incident angle θ0. Let us analyse at first Fig. 2a. It is clearly
seen that these points do not coincide: the upper curve corresponds to the second
of the two equations (8); it intersects y-axis at four points, two of them are in
the vicinity of y ≈ 0.45052 cm, while another two are near y ≈ 0.45056 cm.
The lower curve intersects y-axis at two points, each of them is just in between
two intersection points of the upper curve near y ≈ 0.45052 cm, as well as near
y ≈ 0.45056 cm. The similar results were obtained for the solutions of another
pair of equations, Eqs. (9), that is, for the class of the Hankel functions of the
second kind, H

(2)
m . They are shown in Fig. 2b. It is interesting to note that in all

cases the absolute value of the diffracted beam amplitudes, |Vm|, practically (with
the accuracy to 6 digits after decimal point) does not change in the whole range
of changing of y between the zeros of the first equation in each pair. The last one
means that indeed, in this region two transcendental equations ((8) or (9)) can be
satisfied simultaneously (but of course, approximately) for chosen values of m and
the incident angle θ0.

We should admit that if the distributed Gunn effect structure is concerned,
we did not succeed in finding the solution to our problem for m > 2 and for the rea-
sonable values of y. “Reasonable” in this context means that y should be smaller
than 1 cm. However, if we consider light diffraction by the plasmons in semicon-
ductor films and set y to be greater than 1 cm, then we can find the solutions of
Eq. (8) as well as Eq. (9) for greater m. Some of these results are presented in
Fig. 3a,b. The calculations were done at the next values of the parameters involved:
refractive index of GaAs was supposed to be 3.3, the equilibrium electron concen-
tration n0 ≈ 1014 cm−3, peak value of electron concentration n ≈ 1016 cm−3,
ω = 1.5 × 1015 Hz, Ω = 6−8 × 109 Hz. Now we can comprehend in which sense
this regime can be called “intermediate”. It is intermediate between the Bragg
and Raman–Nath diffractions, since first, Q ≈ 1 (unlike the Bragg diffraction,
when Q > 10 and the Raman–Nath one, when Q < 1), second, we have only one
diffraction maximum for the given L (just like in case of the Bragg diffraction),
but unlike the Bragg regime, the diffraction order can be greater than unit just
like in case of the Raman–Nath diffraction.

5. Discussion and conclusion

We have considered the possibility of light diffraction by the space charge
waves which are the periodic domain trains induced at some circumstances in
GaAs Gunn effect diode. This travelling charge wave can produce the modulation
of semiconductor refractive index, since semiconductor susceptibility depends di-
rectly on the modulation of charge carriers density. Considering Gunn effect type
device, we used at the calculations the typical values of the parameters: the width
of the semiconductor sample to be Lx ≈ 10−3−10−2 cm, equilibrium electron
concentration n0 ≈ 1014 cm−3, the electron concentration within the high field
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domain n ≈ 1016 cm−3. Assuming the condition Ly À Lx to be fulfilled, that is,
the condition which determines the distributed Gunn effect structure, we never-
theless suppose that “interaction length” is smaller than 1 cm. According to our
numerical simulations, the trends are the following: diminishing the angle at small
values of m allows to find simultaneous approximate solutions for the two equa-
tions in each pair ((8) or (9)) for the reasonable values of y, while increasing the
angle does not. The same is valid for the diffraction order m: the greater diffrac-
tion order is, the greater the “interaction length” becomes. Therefore, there exists
some “optimum” concerning the diffraction order and the value of incident angle
in case of the Gunn effect type device, since Ly has to be within the reasonable
limits of about a few tenths of 1 cm. If one deals with SCW of the plasmon-type
generated in semiconductor sample, one has more “degrees of freedom”, that is,
one can have greater Ly and hence, greater m and greater incident angle.

Estimating the efficiency of the deflector or directional coupler based on
acoustic surface waves, one has to know what a fraction of the power of electric
signal applied to the device is transformed into acoustic signal. In case of acoustic
surface wave modulators this fraction is usually small and as a result, the refractive
index modulation, being indirect, is also small. In case of the light diffraction by
means of space charge waves we have all reasons to believe that such modulation,
being direct, can be, first, greater and, second, could be achieved in much simpler
and easier way.

In conclusion we would like to mention perhaps one of the most attractive
possible applications of the device proposed in the paper. It is the guiding and
deflecting of surface electromagnetic waves (SEW). SEW is simply a polarized
wave propagating along the planar boundary which separates free space from the
half space with a finite conductivity. SEW modes can occur for instance, near the
infrared region in semiconductors such as GaP and GaAs [11] as well as on thin
films of photonic band gap materials [12]. In semiconductors their behaviour can
be controlled by doping, roughening of the surface, and external magnetic fields.
Coupling the SEW device with that discussed in the paper could lead, perhaps to a
kind of miniaturized photonic circuits combining waveguides, switchers, directional
couplers, and so on.

Appendix

Here we show how Eq. (3) can be derived. Plugging (2) into (1), we have
∞∑

n=−∞

{
V ′′

n − 2ik cos θ0V
′
n(y)− [k2 + 2nkk0 sin θ0 + n2k2

0

−(ω + nΩ)2/c′2]Vn(y) + (ε1/ε0c
′2)(ω + nΩ)2[Vn+1(y) + Vn−1(y)]

}

× exp (i[(ω + nΩ)t− (k sin θ0 + nk0)x− yk cos θ0]) ≡ F(ε0, ε, ρ),

where the primes stand for the corresponding derivatives with respect to y.
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Multiplying both sides of the equation by exp(−i[(ω +mΩ)t+(k sin θ0 +mk0)x+
yk cos θ0]) and integrating over x from −π/k0 to +π/k0 and over t from −π/Ω to
+π/Ω , we get Eq. (3), where

Fm(ε0, ε1, ρ0, ρ1) = −2πk0

ε0
[(ε1/ε0)ρ0 − ρ1]γ

(
k0Ω
α1

+
k0Ω
α2

)

+i
πk0ε1ρ1

ε20
γ

(
k0Ω
α3

− k0Ω
α4

)
,

α1 = [ω + (m− 1)Ω ][k sin θ0 + (m− 1)k0],

α2 = [ω + (m + 1)Ω ][k sin θ0 + (m + 1)k0],

α3 = [ω + 2(m− 1)Ω ][k sin θ0 + 2(m− 1)k0],

α4 = [ω + 2(m + 1)Ω ][k sin θ0 + 2(m + 1)k0],

γ =
[
(−1)m+1 cos

(πω

Ω

)
− 1

] [
(−1)m+1 cos

(
kπ

k0
sin θ0

)
− 1

]
.
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