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Two electrons on a lattice pose an interesting problem which can be

solved exactly. When the effective interactions are strong enough, the bound

states are formed. The properties of such bound pairs in an extended Hub-

bard model are examined for both signs of nearest neighbor hopping inte-

gral t. The stabilization of s∗-wave pairing is found for t < 0 and of f -wave

for t > 0. Phase diagrams for the existence of none, one or two s∗-wave

solutions are calculated.

PACS numbers: 71.10.Fd, 74.20.Rp, 71.27.+a, 71.10.Hf

1. Introduction

Since the discovery of high temperature superconductivity (HTS) the theo-
retical effort to understand its properties has not stopped. Despite a lot of work,
there is consensus about few things. In particular, there are very few exact re-
sults. One of them is a solution of the bound state of two-electron pair on a
lattice. The connection with the superconductivity is by a theorem of Randeria et
al. [1], saying that the critical value of the nearest-neighbor (n.n.) interactions for
appearing of the bound, two-electron state is also a critical value for appearing of
the superconductivity of the s-wave symmetry in two dimensions (d = 2).

On the other hand, the two-electron problem is low density (and also strong-
-coupling) limit of BCS equations. Thus it may be relevant to the phenomenon of
the pseudogap as well as to the BCS-BEC (Bose–Einstein condensation) crossover,
in particular to the problem of the Bose–Einstein condensation of pre-formed,
bound pairs, thought to be one of the possible mechanisms of HTS.

The solution of two-electron bound states, treated as a limiting case of low-
-density paired electron systems may shed light not only on HTS but also on
phenomena in other strongly correlated materials like heavy fermion systems or
cobalt-based superconductors [2].

While the properties of two-electron states on a square lattice were partly
examined [3–9] (the general properties of bound (magnon) states given by Mat-
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tis [10]) the hexagonal lattice possessed by, e.g., cobaltates or many heavy electron
systems, is much less explored [11]. The present paper tries to close this gap.

2. The formalism

The model of interest is an extended Hubbard model on a hexagonal lattice

H = t
∑

〈ij〉σ
(c†iσcjσ + h.c.) + U

∑

i

ni↑ni↓ + W
∑

〈ij〉

∑

σσ′
niσnjσ′ , (1)

where t is the hopping integral, 〈ij〉 means n.n., U is on-site and W is inter-site
(between n.n.) effective interaction. Numerical results in this paper are obtained
for negative (attractive) values of U and W . Thus the present paper will extend
and generalize the results of Ref. [11], which were obtained for U > 0.

One of possible causes of attraction between charges is, e.g., interaction via
phonons like in BCS theory. Other possible sources of parameter renormaliza-
tion are interactions with other (quasi)bosonic degrees of freedom like excitons or
plasmons, coupling of electrons to other electron subsystems in the solid or other
purely chemical mechanisms [3]. Let us also note that while the n.n. W -term has
its contributions in the singlet and triplet pairing channels with the same sign, the
Heisenberg term, JSi · Sj , added to the Hamiltonian, yields the contribution in
both channels with the opposite sign. Thus we may obtain the effective attrac-
tive pairing in one of the channels even for all the Hamiltonian parameters being
positive.

We will also consider both the case of positive and negative t. Because the
lattice is not bipartite, these two cases are not equivalent. The band energy in the
lattice of interest is given by the formula

εk = 2t cos(kx) + 4t cos
(

kx

2

)
cos

(√
3

2
ky

)
. (2)

We expand the wave function in the basis of the two electron states given by the
plane waves, with definite quasimomenta. Such states are the eigenstates of the
hopping part of the Hamiltonian Eq. (1). We will write them down in the center
of mass coordinate system as |P , q〉, where P is the center of mass momentum
and q is the relative momentum. The wave function is a sum of all possible such
states with appropriate weights FP (q):

ΨP =
∑

q

FP (q)|P , q〉. (3)

The set of coefficients FP (q) fully describes the system. By the action of the
Hamiltonian in k-space, we can obtain in a standard way the equation of motion
for FP (q):

(E − εP /2−q − εP /2+q)FP (q)

= U
∑

k

FP (k) + W
∑

δ

e−iqδ
∑

k

FP (k)e−ikδ. (4)
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By recalling that the real space wave function is the Fourier transform: ΨP (r) =
(1/N)

∑
q FP (q) exp(−iq · r), we can obtain

ΨP (r) =
∑

r′
G(E, P , r, r′)V (r′)ΨP (r′), (5)

where

G(E, P , r, r′) =
1
N

∑
q

e−iq(r − r′)

E − εP /2−q − εP /2+q
. (6)

If r belongs to a set describing the position of an atom in the center of coordinate
system and its n.n., then Eq. (5) becomes a matrix equation

Ψ̌ = Ǧ(E, P )V̌ Ψ̌ , (7)
where Ψ̌ is a vector, whose components are the wave functions in position space
at respective r’s. In the notation, where the first element has an index zero, the
first element, Ψ0, is the wave function at the center of the coordinate system,
Ψ1, Ψ2, . . ., Ψ6 are the wave functions at the positions of n.n. (anticlockwise).
V̌ is diagonal interaction matrix, with V00 = U and Vnn = W , n = 1, 2, . . . , 6
and elements of Ǧ are given by Eq. (6), where both r and r′ belong to a set
r0, r1, . . ., r6.

By a similarity transformation we can cast vector Ψ into the form, such that
its components are the eigenfunctions of the symmetry operations of the point
group of the lattice (for hexagonal lattice it is C6v). The transformation matrix
can be easily read off from the character table of the symmetry group and is given
below



1 0 0 0 0 0 0
0 1/

√
6 1/

√
6 1/

√
6 1/

√
6 1/

√
6 1/

√
6

0 2/
√

12 −1/
√

12 −1/
√

12 2/
√

12 −1/
√

12 −1/
√

12
0 i/

√
6 −i/

√
6 i/

√
6 −i/

√
6 i/

√
6 −i/

√
6

0 2i/
√

12 i/
√

12 −i/
√

12 −2i/
√

12 −i/
√

12 i/
√

12
0 0 −1/2 1/2 0 −1/2 1/2
0 0 i/2 i/2 0 −i/2 −i/2




. (8)

After the transformation, in the numerator of the Green function of Eq. (6) there
will appear the combinations of exponents, transforming according to the irre-
ducible representations (irreps) of the symmetry group of the lattice. The symbols
of those irreps will be the new indexes of the Green function in the new form

Gmn(P , E) =
1
N

∑
q

φn(q)φm(q)
E − εP /2−q − εP /2+q

, (9)

where
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


φ0

φ1

φ2

φ3

φ4

φ5

φ6




=




1√
2
3 (cos qx + 2 cos qx

2 cos
√

3qy

2 )

2√
3
(cos qx − cos qx

2 cos
√

3qy

2 )

2 sin qx

2 sin
√

3qy

2√
2
3 (sin qx − 2 sin qx

2 sin
√

3qy

2 )

2√
3
(sin qx + sin qx

2 cos
√

3qy

2 )

2 cos qx

2 sin
√

3qy

2




A1,

A1,

E2,

E2,

B1,

E1,

E1,

s

s∗

dx2−y2

dxy

f

px

py

. (10)

In the two rightmost columns there are, respectively: symbols of the irreps, ac-
cording to which a given φn transforms and symbols traditionally labeling wave
functions of given symmetry. In Fig. 1 there is a contour plot of the above functions
superimposed on the outline of the Brillouin zone.

Fig. 1. Outline of the wave functions, which transform according to the irreducible

representations of the symmetry group of hexagonal lattice C6v. Top row from the left:

s∗, dx2−y2 , dxy, bottom row from the left: f , px, py, according to the notation given in

Eq. (10).

To find eigenenergies we have to solve Eq. (7), which has nontrivial solutions
when

det(1− ǦV̌ ) = 0. (11)
Thanks to the described transformation the determinant (Eq. (11)) decouples in
the various points of the Brillouin zone (B.z.). In the Γ point, only the s and s∗
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(extended-s) pairings stay coupled, yielding an equation

det

(
1/U −G00 −G01

−G10 1/W −G11

)
= 0. (12)

The other pairings in the Γ point are given by

1/W = Gnn, where n = 2, 3, . . . , 6. (13)
On Γ−K line dxy- and py-wave pairings separate completely, while the pair-

ings s+s∗+dx2+y2 and px+f stay coupled. In other parts of B.z. the determinant
of Eq. (11) decouples only into singlet s+ s∗+dx2+y2 +dxy and triplet px +py +f

pairings.
During calculation of critical values from Eq. (12) we have to deal with the

divergence of G̃00, G̃01, G̃10 and G̃11, where G̃mn means Green function Gmn(E)
at the band bottom (i.e., E = −12|t| for t < 0 and E = −6t for t > 0). The way
to circumvent this problem is to divide the Green functions into divergent and
non-divergent part and then to make the coefficient at the divergent part equal to
zero. The following equalities come in handy
— for t < 0:

G̃11 − 6G̃00 = 1/2, (14)

G̃01 −
√

6G̃00 = 1/(2
√

6), (15)
— for t > 0:

G̃11 − (3/2)G̃00 = 1/4, (16)

G̃01 +
√

3/2G̃00 = −1/(2
√

6). (17)

3. Results

In Fig. 2 there are eigenenergy solutions for different pairings across the B.z.
for t < 0. The pairing most strongly stabilized around the minimum of the band
energy in the Γ point is s∗-wave. Let us note that we can unambiguously label
the pairings in the Γ point only. In any other part of the B.z. pure pairings do
not exist (except for py and dxy on the Γ−K line), due to equation coupling; we
have admixtures of different pairings in different proportions, depending on the
position in B.z. In most of B.z. we can just tell the difference between singlet and
triplet pairing. In some cases we can label the pairing, tracing curves to the Γ
point. This way we can identify the lowest state on K−M line as p-wave, a fact
interesting in itself, as the ground state around the minimum of the band in Γ
point is s∗-wave. The weakest bound state due to intersite interactions is triplet
f -wave (we did not consider pure s-wave, which depends only on U).

To create a bound pair at the bottom of the band (E/|t| = −12) a critical
value of W must be reached for p-wave pairing (Wc/|t| = −7.092), d-wave pair-
ing (Wc/|t| = −12.988), and f -wave pairing (Wc/|t| = −15.623). The pairs of
s∗-wave type require only infinitesimal on-site attraction (for W = 0) or infinitesi-
mal inter-site attraction (for U = 0). For finite U and W the threshold value must
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Fig. 2. Dispersion curves across the B.z. for t < 0, W/|t| = −18 and U/|t| = −10.

Label “trip.” means one of the triplet solutions of the coupled px +py +f -wave pairings;

“sing.” denotes one of three or four solutions of the four coupled equations for the singlet

s + s∗ + dx2−y2 + dxy-wave pairing. Dotted line denotes pure s-wave pairing.

be reached, which is a function of these parameters. A critical value for W for
t < 0 is given by the formula

Wcr/|t| = −2U

12|t|+ U
. (18)

For infinite on-site repulsion the intersite attraction must reach W = −2|t| to
form a bound state. For infinite intersite repulsion the on-site attraction needed
for formation of a bound state is −2|t| times the number of n.n., i.e., U = −12|t|.
The plot of the formula of Eq. (18) is given in Fig. 3. Let us note that in the
plot there are two critical lines. There are two possible bound states of s∗-wave
symmetry, with different properties, in particular one of them is much stronger
bound than the other.

The binding energy is shown in Fig. 4. We can compare behavior of the
solutions from the area with one and with two solutions in Fig. 3. All curves
begin, for E = 0, at their respective critical values. The ss∗ for U = 0 curve
begins at 0, as was told before. The curve for U = −10|t| begins for some positive
critical value of W and its energy grows with decreasing W . It is the only solution
of 2×2 determinant for ss∗-wave pairing in Γ point. For U = −15|t| there are two
solutions. The energy of the first one never drops below a finite asymptotic value.
The other starts at the pretty large, critical value and also grows with decreasing
W but much more slowly than other pairings.
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Fig. 3. Critical value for creation of bound pair for t < 0.

Fig. 4. Binding energy of pairs of different symmetries for t < 0. U = inf means infinite

on-site repulsion. Horizontal dashed line is the asymptote for the two branches of the

U = −15|t| solution: dashed leftmost and dashed rightmost.

An example of the described behavior could be seen in Fig. 2, where there
are only three singlet lines, despite they are calculated from the determinant 4×4
(2×2 in the Γ point) and there should be four solutions. For U = −10|t| we are in
the area of the phase diagram of Fig. 3, where one of the solutions does not exist.

In Fig. 5, for t > 0, there are four singlet lines, as the critical value in this
case is given by the formula

Wcr/t =
−4U

6t + U
. (19)
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Fig. 5. Dispersion curves across the B.z. for t > 0, W/t = −18 and U/t = −10. Label

“trip.” means one of the triplet solutions of the coupled px + py + f -wave pairings;

“sing.” denotes one of three or four solutions of the four coupled singlet equations for

the s + s∗ + dx2−y2 + dxy-wave pairing.

The asymptotes are for W/t = −4 and U/t = −6, so the values of the parameters
U/t = −10, W/t = −18 put us in the region of the parameter space, where all the
solutions exist.

The order of pairing is for t > 0 reversed: the ground state is f -wave, while
on K−M line its role is taken by the singlet state. The order f , d, s∗, p, s∗ (from
the most to the least bound) is not a precise reversal of the t < 0 case, as we have
additional s∗-wave solution of intermediate energy. The pure s-state is not the
weakest bound state for a given W , this role is taken by s∗-wave solution. Let
us note a complete change of the shape of the band bottom with the change of
the sign of the hopping integral. This is the effect of the hexagonal lattice being
non-bipartite.

In conclusion, the properties of the bound states on the hexagonal lattice
were calculated for both signs of the n.n. hopping integral. All possible pairing
symmetries were examined, binding energies, critical values and dispersion curves
across the B.z. were evaluated. The largest stability of s∗-wave pairs was found
for t < 0 around the band minimum and stabilization of f -wave pairing for t > 0.
The conditions and critical values for the existence of various number of s∗-wave
pairing solutions were found and the phase diagram concerning this problem was
calculated.
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