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The contractor renormalization group method was devised in 1994 by

Morningstar and Weinstein. It was primarily aimed at extracting the physics

of lattice quantum field theories (like lattice quantum chromodynamics).

However, it is a general method of analyzing Hamiltonian lattice systems,

e.g. Ising, Heisenberg or Hubbard models. The aim of this work is to show

the application of contractor renormalization group method to one-dimen-

sional quantum systems — the Heisenberg zig-zag model and the Hubbard

chain. As a test of the method, the ground state energy of these systems

will be calculated.

PACS numbers: 05.10.Cc, 03.65.Fd, 75.10.Jm, 71.10.Fd

1. Introduction

The contractor renormalization group (CORE) method was invented by
Morningstar and Weinstein [1, 2] as an alternative to other real-space renormal-
ization group methods and Monte Carlo techniques for the Feynman path integral
evaluation. The computation with the use of this method begins by restricting
the full Hilbert space of a single block to an appropriately chosen subspace. Then,
clusters of two and more blocks are considered. The overlap of the lowest lying
eigenstates with the tensor products of the retained single-block eigenstates is cal-
culated, which allows to construct a renormalized Hamiltonian. Then, one can
iterate the renormalization group procedure (which is straightforward if the renor-
malized Hamiltonian has the same form as the original one) or use some other
methods to examine the properties of the effective (renormalized) Hamiltonian.
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So far, the CORE framework has been used mainly to analyze the Heisenberg
model [3–9]. Other applications included the 2D Hubbard model [10] and the 2D
t−J model [11].

In this paper we will describe the results of the application of CORE to
the 1D Heisenberg model with nearest-neighbor and next-nearest-neighbor inter-
actions (the Heisenberg zig-zag, also called the Majumdar–Ghosh model) and to
the Hubbard chain in the cases of both on-site attraction and repulsion. The paper
is organized as follows. Section 2 briefly summarizes the CORE method. Section 3
deals with the Heisenberg zig-zag. In Sect. 4 we move on to the Hubbard chain
and finally, some conclusions are given in Sect. 5.

2. Basics of CORE

We implement the following algorithm for computations (in one dimension):

1. Divide the lattice into disjoint and identical blocks of L sites.

2. Diagonalize the single-block Hamiltonian HB and keep the M lowest lying
eigenstates.

3. Construct the projection operator P on the subspace of the retained eigen-
states. Range-1 renormalized Hamiltonian for block j is defined by Hren

1 (j) =
PHB(j)P ≡ h1(j). h1(j) denotes the so-called range-1 term in the cluster
expansion of the renormalized Hamiltonian.

4. Consider a cluster of r connected blocks. Construct the reduced Hilbert space
which is spanned by r tensor products of the retained M states. Diagonalize
the cluster Hamiltonian and keep its Mr lowest lying eigenstates † |ψi〉,
where i = 1, . . . , M .

5. Project the Mr states on the reduced Hilbert space, obtaining a set of Mr

wave functions, which are to be Gram–Schmidt orthonormalized. At the end
of this procedure one has a set of Mr states |ψ̃i〉.

6. Define the range-r renormalized Hamiltonian:

Hren
r ≡

Mr∑
n

εn|ψ̃n〉〈ψ̃n|, (1)

where εn denotes the eigenenergy of the n-th lowest lying eigenstate of the
cluster Hamiltonian.

7. Range-r term in the cluster expansion of the renormalized Hamiltonian is
given by

hr(j, . . . , j + r − 1) = Hren
r (j, . . . , j + r − 1)

†In the case of degeneracies in the spectrum of the cluster Hamiltonian one sometimes
has to keep more than Mr eigenstates at this stage and at a later stage perform a singular
value decomposition. The full algorithm one has to follow then is described in detail in [2].



Application of Contractor Renormalization Group . . . 775

−
r−1∑
n=1

r−n∑
m=0

hn(j + m, . . . , j + n + m− 1), (2)

i.e. one subtracts from the range-r Hamiltonian all of the terms already
included in the range-n (n < r) computations.

8. Repeat steps 4–7 for more connected blocks. Neglect terms including more
than some specified value rmax connected blocks, depending on the range of
correlations in the original Hamiltonian. Usually, taking terms of range 2,
3, or 4 is enough to extract the quantities of interest.

9. The infinite-lattice renormalized Hamiltonian is the sum of terms of range
from 1 to rmax:

Hren =
∞∑

j=−∞

rmax∑
r=1

hr(j, . . . , j + r − 1). (3)

3. The Heisenberg zig-zag

In this section we will present the application of CORE to calculate the
ground state energy of an infinite Heisenberg chain with nearest-neighbor (n.n.)
and next-nearest-neighbor (n.n.n.) interactions. The model Hamiltonian is

H =
∑

i

Si · Si+1 + J
∑

i

Si · Si+2, (4)

where Si is site-i spin-1/2 operator and J denotes the ratio of exchange integrals
for n.n.n. and n.n. interactions.

We start with calculations for M = 1 retained state of the single-block
Hamiltonian with a single block consisting of L = 2 (scheme A) and L = 3
(scheme B) spins. Then, range-r renormalized Hamiltonian equals the ground state
energy of r connected blocks. The range-r terms in the cluster expansion equal:
h1 = Hren

1 , h2 = Hren
2 − 2h1, h3 = Hren

3 − 2h2− 3h1, h4 = Hren
4 − 2h3− 3h2− 4h1,

etc. The range-r ground state energy estimate is given by the sum of the first r

terms hn.
Figure 1 (left) shows the result of the computations of range-1 to range-6

estimates for the ground state energy for scheme A. The range-6 computation
requires an exact diagonalization of 4096 × 4096 matrices for twelve-spin blocks
which is quite intensive in terms of computer time and memory, but still feasible
even on a PC. Each further block takes a factor of 64 of computer time and a
factor of 16 of computer memory more, rendering calculations for bigger blocks
very hard. The range-1 approximation does not depend on J , since within a two-
-spin block the n.n.n. interaction is not possible. The case of J = 0 corresponds
to the Heisenberg chain, for which an exact result of Bethe [12] and Hulthén [13]
is known (1/4− ln 2 ≈ −0.443147). The CORE range-6 result is –0.442028, which
is just 0.25% above the exact result. The precision of this result is impossible to
obtain within other approximation schemes, like the “naive” renormalization group
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(an account of the problem with this approach is given e.g. in [5]) or spin-wave
approximation [14]. The case of J = 0.5 is the Majumdar–Ghosh limit, in which
the ground state wave function is a product of non-interacting singlets. CORE
reproduces this result in range-1 computation, i.e. higher ranges are identically
zero. For J ∈ [0, 1] range-5 and range-6 terms are very small. This shows that
the range-6 result is very near to the exact answer, with an estimation error of
the same range as for the J = 0 case. For J > 1, the CORE ground state energy
estimates begin to diverge, with the exact result being somewhere between the
range-5 and range-6 curve. Therefore, CORE, at least for the L = 2 scheme,
seems to be unreliable for J > 1. However, for J < 1 the results are very accurate.

Fig. 1. (left) The range-1 to range-6 estimates of the ground state energy per spin for

the Heisenberg zig-zag (scheme A: L = 2 spins per block, M = 1 retained state). (right)

The range-1 to range-4 estimates of the ground state energy per spin for the Heisenberg

zig-zag (scheme B: L = 3 spins per block, M = 1 retained state).

Figure 1 (right) shows the results of the computations of range-1 to range-4
estimates for the ground state energy for scheme B. In this case, the three-spin
and nine-spin block ground states are doubly degenerate, while the six-spin and
twelve-spin block ground states are non-degenerate. This difference in the ground
state structure of a block accounts for the fact that this approximation scheme
fails for all values of J , despite the fact that the range-4 computation is as time-
and memory-consuming as the range-6 calculation within scheme A. This example
suggests that an appropriate blocking procedure is essential in CORE.

The block ground state structure gives a hint of such procedure for the case
of L = 3 — one should keep (at least) two, instead of one, single-block states
to construct the reduced Hilbert space. Such scheme (M = 2 retained states of
a single-block (L = 3) Hamiltonian) will be now used. In this case, the range-2
renormalized Hamiltonian for block j takes the form

Hren
2 (j) = C21j +

∑

i,i+1∈j

α2 (Si · Si+1) , (5)

where the parameters C2 and α2 are to be found (i and i + 1 are sites within the
block j). The full (infinite-lattice) range-2 renormalized Hamiltonian is the sum
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of all range-1 and range-2 terms

Hren =
∞∑

i=−∞
[(C2 + 1)1i + α2(Si · Si+1)] . (6)

To obtain an estimate for the ground state energy, one has to iterate this Hamil-
tonian infinitely many times. However, the iterations preserve this form of the
Hamiltonian. After n iterations, the renormalized Hamiltonian is

Hren−n =
∞∑

i=−∞

{
(α′2)

n−1α2(Si · Si+1) +
[
3n−1(C2 + 1) + 3n−2α2(C ′2 + 1)

+ . . . + 3α2(α′2)
n−3(C ′2 + 1) + α2(α′2)

n−2(C ′2 + 1)
]
1i

}
, (7)

where C ′2 = −2.124893 and α′2 = 0.491582 denote the parameters of renormaliza-
tion for the J = 0 Heisenberg chain. Thus, the ground state energy per spin is
equal to the n → ∞ limit of the expression in brackets, divided by the volume
of the lattice. Taking into account that we have obtained an expression for an
infinite geometric series, we finally get

E

N
=

C2 + 1
3

+
α2(C ′2 + 1)

9− 3α′2
. (8)

For the J = 0 case, this expression reduces to the Morningstar–Weinstein re-
sult [2] for the range-2 estimate of the ground state energy of the Heisenberg chain
((C ′2 + 1)/(3 − α′2) = −0.448446), just 1.2% below the exact result of Bethe and
Hulthén.

The range-3 renormalized Hamiltonian for block j takes the form

Hren
3 (j) = C31j +

∑

i,i+1∈j

α3 (Si · Si+1) + γ3 (Si∈j · Si+2∈j) . (9)

The full (infinite-lattice) range-3 renormalized Hamiltonian is the sum of all
range-1, range-2, and range-3 terms

Hren =
∞∑

i=−∞
[(C3 − C2)1i + (2α3 − α2) (Si · Si+1) + γ3 (Si · Si+2)] . (10)

To obtain the estimate for the ground state energy per spin, one again has to
iterate Hren infinitely many times (the form of the Hamiltonian is preserved in
successive iterations). Again, the factor that multiplies the identity operator after
infinitely many iterations gives an estimate of the ground state energy. For the
J = 0 case, the estimate agrees with the Weinstein result –0.447635 [5].

Figure 2 shows the results of the computations of range-2 and range-3 esti-
mates for the ground state energy per spin. The dashed line corresponds to the
value for range-2 and the dotted line for range-3. The solid line is the case of
range-6, L = 2, M = 1 computation (scheme A), which is given for comparison
(for J < 1 it corresponds nearly to the exact result). For the values of J < 0.5,
all three lines almost coincide. The range-3 correction to the energy is small in
this region, which is again the result of a different structure of the ground state
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Fig. 2. The range-2 and range-3 estimates of the ground state energy per spin for the

Heisenberg zig-zag (L = 3 spins per block, M = 2 retained states). The range-6 estimate

(L = 2, M = 1) is given for comparison.

for six-spin and nine-spin clusters. Weinstein argues for the case of J = 0 that
the range-4 term should be much bigger than the range-3 term and shows this
explicitly [5]. One can expect that his argument holds for the nonzero-J case, so
that performing the range-4 computation should give a more exact result (closer to
the range-6 approximation in scheme A). For J ∈ [0.5, 1), the range-2 and range-3
results differ visibly from each other and from the scheme A prediction. One can
assume that again the range-4 computation should fix this problem. For J slightly
below 1, the range-2 and range-3 lines almost meet (the jump of the ground state
energy estimate for J = 1 is a result of the fact that the ground state energy of
a nine-spin block is four times degenerate in this case) and for J > 1 one can
observe an ever-increasing difference between the lines, similarly to the scheme A
case for J > 1. In this regime, CORE seems to fail in all of the schemes under
consideration.

4. The Hubbard chain

In this section, we will show simple CORE calculations of the ground state
energy per site of the Hubbard chain at half-filling, with both attractive and
repulsive on-site interactions. We will retain only the ground state of block and
cluster Hamiltonians (M = 1), so that the renormalized Hamiltonians will be
real numbers. A single block will consist of two lattice sites and we will consider
clusters of at most 6 sites (the numerical form for the six-site Hamiltonian is
already a 924 × 924 matrix). The relevant formulas for hn (n = 1, 2, 3) are the
same as in the Heisenberg zig-zag case.

The model Hamiltonian is

H = −t
∑

〈i,j〉,σ

(
c†iσcjσ + h.c.

)
+ U

∑

i

ni↑ni↓, (11)
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where t is the hopping integral, ciσ and c†iσ are annihilation and creation operators
for an electron of spin σ at site i, U is the on-site interaction strength and niσ

are the number operators of electrons of spin σ at site i. The sum extends over
nearest neighbors.

The exact solution for the ground state energy per site in the 1D case at
half-filling, with on-site repulsion, was given by Lieb and Wu [15]:

Erep(U)
N

= −4
∫ ∞

0

dx
J0(x)J1(x)

x(1 + exU/2)
, (12)

where J0 and J1 are the Bessel functions of zero and first order.
In the case of on-site attraction, the relevant expression is
Eattr(U)

N
=

U

2
+

Erep(|U |)
N

. (13)

Fig. 3. (left) The range-1 to range-3 estimates of the ground state energy per site and

the exact result of Lieb and Wu for the Hubbard chain at half-filling (L = 2 sites per

block, M = 1 retained state). The inset shows the close-up of the same plot. (right) The

errors of estimation of the ground state energy per site for the Hubbard chain, relatively

to the exact result.

Figure 3 (left) shows the results of the computations of range-1 to range-3
estimates for the ground state energy per site vs. interaction strength U/t. The
relative errors of these calculations are given on the right side of Fig. 3. One can
see that the biggest error corresponds to the case of U/t ≈ 1 and is of the order
of 1% (range-3) and 3% (range-2). For a bigger repulsion strength and especially
in the attractive case the estimation errors are much smaller (only around 0.1%
for U/t ≈ −5). This results from the fact that the relatively small clusters that
we consider seem to be enough to capture the case when the probability that
electrons are close to one another is big. At the same time, when the tendency to
localization and delocalization is comparable (U ≈ t), blocks of this size are too
small to accurately describe such case.

However, the relatively small divergence from the exact Lieb–Wu result
seems to show that the mechanisms relevant for the Hubbard chain at half-filling
take place at distance scales of not much more than six neighboring sites.
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5. Conclusions

In this paper we have shown that the CORE method works quite well for 1D
quantum systems — the Heisenberg zig-zag and the Hubbard chain at half-filling.
The method was tested in the calculation of the ground state energy per lattice
site and the results seem to be encouraging. A further test of the method would
be to calculate other operators of interest in the CORE framework and compare
it with available exact or quantum Monte Carlo results.
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