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We discuss the tunneling conductance in a ferromagnet–insulator–triplet

superconductor junction. We consider the superconducting order parame-

ters with spin triplet pairing having nodes. The nodal structure of the order

parameter has been recently confirmed experimentally in Sr2RuO4. In par-

ticular, we study how a mid-gap structure of the tunnelling conductance

depends on the phase difference of the pairing potential as well as on the

orientation of the interface.

PACS numbers: 74.70.Pq, 73.40.–c, 74.45.+c

1. Introduction

The nature and symmetry of the spin-triplet superconductivity in Sr2RuO4

is still a subject of both theoretical and experimental investigation (e.g. [1–7] and
references therein). The reason for the interest in this subject is that an orbitally
anisotropic pairing state is still not well determined.

As the number of possible triplet pairing states is very large, it still remains
an open question, which of them is really relevant for Sr2RuO4. The power-law
behaviour of the temperature dependence of the specific heat and the nuclear spin-
-lattice relaxation rate of 101Ru in Sr2RuO4 suggest the existence of lines of nodes
in the pairing states. However, the positions of these lines are still not established
and further research of this problem is necessary.

The objective of this paper is to discuss the spin polarized charge tunnelling
transport in a ferromagnet–insulator–triplet superconductor junction (F/I/TS),
and, in particular, at bias voltage smaller than the gap function. These tunnel-
ing effects are sensitive both to a phase difference of pair potentials (contained
in electron- and hole-like quasiparticle spectrum) and to the orientation of the
interface with respect to the a-axis of Sr2RuO4 crystal (see Fig. 1). It seems that
the tunneling effects can provide the most precise information on the symmetry
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Fig. 1. Schematic illustration of Y−Z junction. Θ and β denote the angles of injection

of the electron and the orientation of the interface, respectively.

of the superconducting order parameter. In this paper we use the spin polarized
Andreev reflection method to determine the spectra of the tunneling conductance
in F/I/TS junctions.

2. Bogolyubov–de Gennes equations and tunneling conductance

The energy and wave function of quasiparticles, which are injected, reflected
and transmitted through a F/I/TS junction, can be obtained from the extended
Bogolyubov–de Gennes (BdG) equations, valid for both sides of the junction

(
(H0 − E)1̌− Uσ̌zΘ(−x), ∆̌(Θs, x)Θ(x)

∆̌†(Θs, x)Θ(x) −[(H0 − E)1̌− U(x)σ̌zΘ(−x)]†

)



u↑(r)
u↓(r)
v↑(r)
v↓(r)




= Ǒ, (1)
where H0 is the single-particle Hamiltonian H0 = −h̄2∇2/2m+(V −UBσ̌z)δ(x)−
EF, E — energy of the quasiparticle, σ̌z — Pauli matrix, 1̌ — unity matrix, Θ(x)
— Heaviside step function, V — barrier height, and UB — the exchange energy
in the barrier. We choose the z−y interface and tunneling along the x axis in the
RuO2 plane. The gap function ∆ can be written in the following matrix form:

∆̌ = iσy(d(k) · σ) =

[
dx + idy,−dz

−dz,−dx + idy

]

=

[
∆↑↑(Θs, x), ∆↑↓(Θs, x)

∆↓↑(Θs, x), ∆↓↓(Θs, x)

]
, (2)

where Θs and x denote directions of motion of the quasi-particles and the centre
of mass of a Cooper pair, respectively. Let us assume the quantization axis of the
spin triplet superconductor perpendicular to the superconducting RuO2-plane.

In general, several different tunnelling and reflection processes may co-exist
at the interface of the F/I/TS junction. These processes are determined by many
factors such as position of the Fermi energy on both sides of the junction, strength
of the exchange potential, strength of the barrier potential, spin polarization of
the injected electrons, and orientation of the interface. For unitary states, the
spin-up electrons can be paired with the spin-down electrons forming orbitally
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anisotropic Cooper pairs. Therefore, the spectral analysis of the spin polarized
tunnelling conductance can be used to identify the anisotropic order parameters
of the superconductor. The tunneling charge conductance depends not only on
symmetry of the pairs and strength of the exchange field, but also, on the barrier
potentials, which are different for spin-up and spin-down particles.

We analyze the charge conductance spectra in F/I/TS junctions with respect
to the strength of molecular field in a ferromagnet, various barrier potentials at
the interface, and several orientations of the interface. The spin dependent BdG
equations for the assumed superconducting pairing states can be decoupled into
two mutually independent sets of two component equations. The wave function
Ψ(x) at the ferromagnetic side of the junction is a sum of the wave functions of
the incoming electron with up or down spin (↑ (↓)), the reflected hole and reflected
normal electron with up or down spin. In the case of unitary pairing state, the
incoming electron and the Andreev reflected hole have antiparallel spins, while in
the case of nonunitary Cooper pairs, the Andreev reflected hole conserves the spin
of the injected electron.

Therefore, the wave function, at the ferromagnetic side of the junction, for
unitary (Ψu

↑(↓)) states can be written in the following form:

Ψu
↑(↓)(x) =

(
1
0

)
exp (ik↑(↓)x cosΘ) + a↓(↑)

(
0
1

)
exp(ik↓(↑)x cosΘA)

+b↑(↓)

(
1
0

)
exp(−ik↑(↓)x cosΘ), (3)

where k↑(↓) = kF

√
1± x, x = U/EF. ΘA denotes the angle of reflection of the

Andreev hole. The wave function Ψs(x) on the superconducting side is a sum of
electron-like and hole-like quasi-particles

Ψ(x) = c↑

(
u(Θs)

φ∗+v(Θs)

)
exp (iksx cosΘs)

+d↑

(
φ−v(π −Θs)
u(π −Θs)

)
exp(−iksx cosΘs), (4)

where ks = kF is assumed. The phase factor φ± = exp(iϕ±). The coherence
factors are u(Θs) and v(Θs), respectively.

The angles of incidence, reflection, and transmission of the quasi-particles
are related to one another by the Snell law. It is easy to show that in
the case of unitary state there are two critical angles of incidence Θc1 and
Θc2, which divide the region of the incident angle into the following three
different regions: 0 < Θ < Θc2, Θc2 < Θ < Θc1, and Θ > Θc1. When
Θ > Θc1 ≡ sin−1(ks/kF↑) (ks < kF↑) the total normal reflection occurs and
the charge and spin currents from the ferromagnet to the superconductor
vanish. Thus, the probability of the normal reflection is equal to 1. On the
other hand, when Θc1 > Θ > Θc2 ≡ sin−1(kF↓/kF↑) (kF↓ < ks < kF↑) the x
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component of wave vector is purely imaginary. The Andreev reflected holes do
not propagate but a finite amplitude of the Andreev reflected process still exists
(|a↑(E,Θ)|2 > 0). In this virtual Andreev reflection region the charge and spin
currents from the ferromagnet to the superconductor still exist. In the case of non-
-unitary states one critical angle Θc1 exists. When Θ < Θc2 (for unitary states) or
when Θ < Θc1 (for non-unitary states) the Andreev holes exist and propagate in
the ferromagnet. The amplitudes for both Andreev and normal reflections contain
the term δ(E,Θs, ϕ+ − ϕ−) [7] which is very sensitive to the phase difference
ϕ+ − ϕ− of the pairing potential felt by the electron-like (ELQ) and hole-like
(HLQ) quasi-particles as well as to the angle of the interface orientation β. This
sensitivity especially reveals itself in

δ(E,Θs, ϕ+ − ϕ−) =
u(Θs)u(π −Θs)− v(Θs)v(π −Θs)φ∗+φ−

u(Θs)u(π −Θs)
, (5)

where Θs = arcsin(
√

1 + x sinΘ), ΘA = arcsin
(√

1+x
1−x sinΘ

)
, and

∆(Θs)/|∆(Θs)| = exp(iϕ+) = φ+, ∆(π − Θs)/|∆(π − Θs)| = exp(iϕ−) = φ−.
Resonance of the Andreev reflection occurs for certain values of sub-gap energy
and angle of the incidence, which fulfil the condition δ(E,Θs, ϕ+ − ϕ−) = 0.

According to the Blonder–Tinkham–Klapwijk (BTK) formula [8], the in-
tensity of tunnelling conductance depends on the Andreev hole reflection. The
reflection is associated with the creation of the ELQ and HLQ. When the energy
of the injected electron E is larger than the pairing energy, then ELQ and HLQ
can propagate in the superconductor. However, when E is smaller than the gap
function, then ELQ and HLQ are bounded at the interface. These bound states
are sensitive to the phase difference resulting from the different pair potentials
as felt by ELQ and HLQ, and to orientation of the interface determined by the
angle β. The bound states are responsible for conductance peaks which can be
interpreted as states created by elastic Andreev retro-reflective scattering on the
interface.

Let us discuss the energy spectrum of the tunneling conductance through
the F/I/TS junction interface in y−z configuration (see Fig. 1). For simplicity, we
discuss the following unitary states with line nodes [2]:

1. 2D f -wave state B1g × Eu:
∆(Θ) = ∆0 cos 2(Θ − β)[cos(Θ − β) + i sin(Θ − β)],

2. 2D f -wave state B2g × Eu:
∆(Θ) = ∆0 sin 2(Θ − β)[cos(Θ − β) + i sin(Θ − β)].

β denotes the angle between the normal to the interface (x-axis) and a-axis of the
crystal in RuO2 plane. The charge conductance though the F/I/TS junction for
sub-gap energy E and incident angle Θ is given by

σk↑(↓)(E,Θ) = <
(

1 +
k↓(↑) cosΘA

k↑(↓) cosΘ
|a↑[↓]|2 − |b↑[↓]|2

)
. (6)

The total tunnelling conductance, divided by that in the normal metal (RN) can
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be written as follows:

σk(E) = σk↑(E) + σk↓(E), (7)
where

σk↑(↓)(E) =
1

RN

∫ +π/2

−π/2

dΘ cos(Θ)σk↑(↓)(E,Θ)P↑(↓)|k↑(↓)| (8)

and where P↑(↓) = (1± x)/2.

Fig. 2. The normalized tunneling conductance F/I/TS junction with pairing symmetry

B1g × Eu, z = 0 and β = 0 (the top part) and B1g × Eu, z = 0, and β = π/4 (the

bottom part).

The tunneling conductance characteristics strongly depend on orientation
of the interface. In Figs. 2–7 there are presented the normalized tunneling con-
ductance spectra σ as a function of the normalized energy E/∆0 for two 2D —
f -pairing states which have four vertical lines of nodes. The calculations were
performed for several values of the angle β and the exchange parameter x. We
have found a qualitatively different behaviour of the conductance spectra for zero
and non-zero values of the barrier potential z at the interface. In the case of z = 0,
we observe zero-bias conductance peak for x = 0 and for arbitrary values of β.
This peak reflects formation of the zero energy states on the interface due to the
sign change of the pairing potentials contained in the ELQ and HLQ. The zero
energy peak changes into zero energy deep for x ≈ 1 because of suppressing the
spin down hole reflection (x = 1 means spin up saturation in the ferromagnet) (see
Fig. 2). In the case of z 6= 0, we can see that an increase in the barrier potential
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Fig. 3. The normalized tunneling conductance F/I/TS junction with pairing symmetry

B1g × Eu (the top part) and B2g × Eu (the bottom part) for z = 2.5 and β = 0.

Fig. 4. The normalized tunneling conductance F/I/TS junction with pairing symmetry

B1g × Eu (the top part) and B2g × Eu (the bottom part) for z = 2.5 and β = π/16.
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Fig. 5. The normalized tunneling conductance F/I/TS junction with pairing symmetry

B1g × Eu (the top part) and B2g × Eu (the bottom part) for z = 2.5 and β = π/11.

Fig. 6. The normalized tunneling conductance F/I/TS junction with pairing symmetry

B1g × Eu for z = 2.5 and β = π/8. The pairing symmetry B2g × Eu yields the same

result.

exhibits the mid-gap peak structure (Figs. 3–7). The resonant tunneling occurs
for energy equal to the energy of the bound states determined from the equation
δ(E,Θs, ϕ+ − ϕ−) = 0. The positions of the mid-gap conductance peaks depends
both on the phase difference of the pairing potentials felt by ELQ and HLQ and on
the angle β of the orientation of the interface. The tunnelling conductance spec-
tra plotted in Figs. 3–7 evidently show that the tunnelling spectroscopy is very
sensitive to the phases of the pairing potentials and orientation of the interface.
Changing β from 0 to π/4 we can see that:
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Fig. 7. The normalized tunneling conductance F/I/TS junction with pairing symmetry

B1g × Eu (the top part) and B2g × Eu (the bottom part) for z = 2.5 and β = π/4.

a) for small β only two mid-gap peaks appear and in the case of B1g × Eu

state the peaks are localized near the centre of the gap but in the case of B2g×Eu

state they are localized near the edges of the gap;
b) for intermediate values of β all four mid-gap peaks emerge;
c) for greater values of β again a two-peak structure appears.
The results obtained for β = 0 and β = π/4 in [2] are reproduced in our

paper.
3. Final remarks

The resonance tunneling conductance in the F/I/TS junction depends upon:
a) height of the barrier potential;
b) strength of the molecular field in the ferromagnet;
c) phase difference of the pair potentials contained in ELQ and HLQ;
d) orientation of the interface with respect to the crystal axis of the triplet

superconductor.
If signs of the pair potentials are opposite, then the zero-energy bound states

at the interface are formed. These bound states lead to a zero-bias conductance
peak. Increasing strength of the molecular field strongly suppresses the tunnelling
conductance. In particular, a zero-bias peak evolves towards a zero bias deep.
The finite barrier potentials yield tunnelling conductance spectra with mid-gap
peaks. Positions of the mid-gap peaks depend on the phase difference between the
pair potentials, contained in ELQ and HLQ, as well as on the orientation of the
interface.
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