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We determined the localization threshold in a partially filled and doubly

degenerate model of correlated electrons. Particular emphasis is put on

a non-integer band filling n ≥ 1, when the system decomposes into the

localized and the itinerant subsystems; this situation is described by an

effective s–d model. A simultaneous transition to the ferromagnetic state is

discussed as driven by the Hund rule coupling combined with the effective

field coming from the correlations. The dependence of the quasiparticle

mass on the spin direction appears naturally in the spin-polarized phase and

is attributed to the electron correlation effects, as is also a metamagnetic

transition in an applied field. Although the main results were obtained

within the saddle point slave-boson approach, their qualitative features are

discussed in general terms, i.e. as a transition from quantum-mechanical

indistinguishability of particles forming the Fermi fluid to a two-component

situation.

PACS numbers: 71.27.+a, 71.30.+h, 75.10.Lp

1. Introduction

The longstanding problem [1] of the dual (localized-itinerant) nature of corre-
lated electrons has been recently addressed in the context of heavy-fermion systems
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containing 5f states due to U ions and termed the partial localization [2]. It appears
only when the occupancy nf of the 5f states is a noninteger number and exceeds
unity, as is expected for uranium containing compounds, even though a relatively
strong hybridization of 5f states with 6d−7s states takes place. Therefore, such
a decomposition of the quantum-mechanically indistinguishable electrons into two
separate subsystems must be accompanied by a phase transition and attributed
to the correlation effects such as the Hund rule exchange interaction, particularly
when combined with the direct Coulomb (Hubbard) interaction.

The question arises whether such a decomposition can occur also for 3d

electrons [3, 4]. This is a legitimate question, since the s−d model, involving
a mixture of localized and itinerant electrons is invoked ad hoc [5], for example
for the semiconducting spinels and the manganites, where inequivalent 3d states
(for example the dx2−y2 and dz2 orbitals forming eg orbital doublet) appear.

The partial localization has been discussed mainly in the model situations
[2–4]. In this paper we would like to discuss specific physical properties related
to this phenomenon not discussed in detail so far. Namely, we show first that
the transformation into the localized-itinerant mixture is often accompanied by
a formation of saturated ferromagnetic state, i.e. with one spin orientation of
carriers at the Fermi level. Secondly, the spin-direction dependence of the mass
enhancement, predicted some time ago [6], and confirmed experimentally very
recently [7], for the case of 5f -electron systems, is estimated numerically to see if
such interesting effects are observable also for the itinerant 3d magnets. Finally, we
provide an exact analytic argument how the orbitally degenerate Hubbard model
with the Hund rule coupling included, can be transformed into an effective s−d

model involving the partial localization.

2. The model

We start from the orbitally doubly degenerate version of the Hubbard model
containing inequivalent, but spatially isotropic, hopping integrals, tijl = tl, with
the orbital index l = 1 or 2. This means that the starting system Hamiltonian is
of the form

H =
∑

〈i,j〉,σ

2∑

l=1

tla
†
ilσajlσ − 2J

∑

i

(
Si1 · Si2 +

3
4
n̂i1n̂i2

)

+U
∑

i,l

n̂il↑n̂il↓ + (U − J)
∑

i

n̂i1n̂i2 − 2
∑

i,l

Sz
ilh. (1)

In this Hamiltonian the first term is the hopping term, the second expresses the
complete form of intraatomic interorbital exchange (the Hund rule coupling), the
third describes intraatomic intraorbital Coulomb term (the Hubbard term), the
fourth describes the intraatomic interorbital Coulomb term with nil =

∑
σ nilσ

being the number of electrons on site i and orbital l, whereas the last term repre-
sents the effect of the external magnetic field. The summation 〈i, j〉 denotes that
over the nearest neighboring sites i and j.
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2.1. Slave-boson approach
The method we use is the auxiliary (slave) boson approach, in which each

K-particle state on site i is labeled with a boson field β
(K)†
i,l1σ1,...,lKσK

. In effect, the
physical K-electron state located on that site assumes the form

|i, l1σ1, . . . , lKσK〉 =
K∏

m=1

a†ilmσm
|0〉 = β

(K)†
i,l1σ1,...,lKσK

K∏
m=1

f†ilmσm
|v〉, (2)

where |v〉 is the auxiliary vacuum state and f† represents the pseudofermion cre-
ation operator. The new Fock space contains states which have no physical mean-
ing. To get rid of them, we have to take into account the following constraints:

4∑

K=0

∑

IK

β
(K)†
i,IK

β
(K)
i,IK

= 1i, (3)

n̂ilσ = f†ilσfilσ =
4∑

K=1

∑

IK

′
β

(K)†
i,IK

β
(K)
i,IK

, (4)

where IK = {l1σ1, . . . , lKσK} is a multi-index, and primed summation is taken
over configurations with (l, σ) state occupied. The first constraint ensures the
completeness condition of the basis vector set on each site, the second expresses
the equivalence of counting the electrons in terms of either fermions or bosons.
This representation was introduced some time ago [8, 9]. It has a drawback in
the sense that it does not reproduce the spin-flip part of the full Hund-rule term
through the slave bosons [10, 11]. Thus, within this method we can include only
the Ising part of that term. In other words, we start not from the full form of the
Hamiltonian (2), but from its simplified form without the spin-flip term. In effect,
we can rewrite (2) in the form

H =
∑

〈i,j〉,σ

2∑

l=1

tla
†
ilσajlσ + U

∑

i,l

n̂il↑n̂il↓

+
∑

i,σ

(Uan̂i1σn̂i2σ̄ + Upn̂i1σn̂i2σ) + HZ . (5)

Here Ua = U − 2J , Up = U − 3J , HZ = −2
∑

i,l S
z
ilh.

The Hamiltonian (4), expressed through the new fermion and boson fields
with inclusion of the constraints (2) and (3) via the corresponding Lagrange mul-
tipliers and the additional renormalizing factors [8, 9], reads now

H̃ =
2∑

l=1

∑

i,j,σ

f†ilσ(tlẑ
†
ilσ ẑjlσ − σhδij)fjlσ +

∑

i

4∑

K=2

∑

IK

∑

a,b

Ulaσalbσb
β

(K)†
i,IK

β
(K)
i,IK

+λ
(1)
i

(
4∑

K=0

∑

IK

β
(K)†
i,IK

β
(K)
i,IK

− 1i

)
+ λ

(2)
ilσ

(
f†ilσfilσ −

4∑

K=1

∑

IK

β
(K)†
i,IK

β
(K)
i,IK

)
, (6)

where the factor renormalizing the hopping term is
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ẑilσ =
1√

1− n̂ilσ

4∑

K=1

∑

ĨK−1

β
†(K−1)

iĨK−1
β

(K)
iIK

1√
n̂ilσ

. (7)

The factors 1/
√

1− n̂lσ and 1/
√

n̂lσ ensure the proper Hartree–Fock limit value of
ẑlσ [8, 9]. The Hamiltonian in the form (5) is used next to construct the partition
function expressed as a functional integral over coherent states of the Fermi and
Bose fields, in a standard manner [12]. This integral, however, cannot be handled
directly, as only bilinear fermionic part can be integrated out exactly. To proceed
further, an approximation scheme must be developed. We shall use the saddle-
-point (mean-field) approximation for the Bose fields (their mean-field amplitudes
are defined in Table, and the new labeling of the electron configurations is explicitly
specified).

TABLE

Site configurations with K = 1, . . . , 4 electrons and their

slave-boson (SB) labeling.

Configuration SB representation Mean-field value

representation of the Bose field

|0〉 e†|v〉 e

|lσ〉 f†lσp†lσ|v〉 plσ

|l ↑ l ↓〉 f†l↑f
†
l↓d

†
l |v〉 dl

|1σ2σ〉 f†1σf†2σd†σ|v〉 dσ

|lσl̄σ̄〉 f†1σf†2σ̄w†σ|v〉 wσ

|lσ̄l̄σl̄σ̄〉 f†lσ̄f†
l̄σ

f†
l̄σ̄

t†lσ|v〉 tlσ

|1 ↑ 1 ↓ 2 ↑ 2 ↓〉 f†1↑f
†
1↓f

†
2↑f

†
2↓q

†|v〉 q

2.2. The saddle-point approximation
In the saddle-point approximation all the Bose fields are approximated by

their expectation values. This means that the operator quantities ẑilσ (ẑ†ilσ) reduce
to the site-independent real numbers zlσ, which renormalize the bare hopping inte-
grals tl and make them explicitly spin-dependent. In result, in the spin-polarized
state the effective masses of quasiparticles represented by the pseudo-fermion fields
become also spin-dependent. We assume also a rectangular (featureless) form of
(bare) density of states in both bands

ρl(ε) =
1

Wl
θ

(
Wl

2
− |ε|

)
, (8)

where θ is the Heaviside step function, and Wl is the bare band width of the l-th
band. In what follows we take the limit of zero temperature. Those assumptions
allow us to find a closed, analytic expression for the ground-state energy function
(per site) of the system, which has the following form:
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E = −
∑

l,σ

Wl

2

×(eplσ + dlplσ̄ + dσpl̄σ + wσ(l)pl̄σ̄ + wσ̄(l)tl̄σ̄ + dl̄tlσ̄ + dσ̄tl̄σ + tlσq)2

+
∑

l

Uld
2
l + Ua

∑
σ

w2
σ + Up

∑
σ

d2
σ +

∑

l,σ

(Ul̄ + Ua + Up)t2lσ

+

(
2Ua + 2Up +

∑

l

Ul̄

)
q2 − σh

∑

l

nlσ. (9)

However, one has to keep in mind that variables in (8) are not independent.
First, we write down the mean-field version of the constraints (2) and (3), which
are

1 = e2 +
∑

l,σ

(p2
lσ + t2lσ) +

∑

l

d2
l +

∑
σ

(w2
σ + d2

σ) + q2, (10)

and

nlσ = p2
lσ + d2

l + d2
σ + w2

σ(l) + t2l̄σ + t2lσ̄ + t2l̄σ̄ + q2, (11)

where nlσ = 〈f†ilσfilσ〉. The squares of the corresponding mean-field amplitudes
have the interpretation of probabilities of finding the respective electron configu-
rations. It is the total number of electrons per site, n =

∑
lσ nlσ, which is fixed.

Thus, when minimizing E we use the following constraint for the band filling:

n =
∑

l,σ

(p2
lσ + 3t2lσ) +

∑

l

2d2
l +

∑
σ

(2w2
σ + 2d2

σ) + 4q2. (12)

Let us note that the Lagrange multipliers do not appear in (8) explicitly, as they
are now expressed through the bosonic fields. The functional dependence of the
energy on the values of e, plσ, . . . , q leads to the result similar to those obtained
earlier by means of the Gutzwiller ansatz. The quasiparticle mass enhancement is
connected to the band narrowing factor qlσ ≡ z2

lσ by the relation [6]
m∗

lσ

ml
=

1
qlσ

, (13)

where ml is the bare (band) mass in the l-th band, and

qlσ = (eplσ + dlplσ̄ + dσpl̄σ + wσ(l)pl̄σ̄ + tl̄σ̄wσ̄(l) + dl̄tlσ̄ + dσ̄tl̄σ + tlσq)2

/nlσ(1− nlσ) ≡ γlσ/nlσ(1− nlσ), (14)
where the equation defines also the quantity γlσ, which we refer to as the reduced
band narrowing factor. Hence, the mass enhancement factor is spin-dependent in
either ferromagnetic metallic (FM) state or in paramagnetic metallic (PM) state
in an applied magnetic field. It is pronounced close to the PM→FM phase tran-
sition, as discussed below. The ground-state properties of the correlated Fermi
liquid are determined, when E is minimized with respect to all Bose fields and
with self-consistently adjusted position of the chemical potential for a given band
filling n and for the fixed values of parameters: the band widths Wl and the inter-



624 J. Jȩdrak, J. SpaÃlek, G. Zwicknagl

action parameters U and J , where here we take that J = 0.25U . We also assume
that W1 = 4, W2 = 2.

3. Discussion of results

In this section we discuss the results obtained by the numerical minimiza-
tion of the ground-state energy function (8). First, we minimize E with respect
to all sixteen slave-field amplitudes, with the constraints (9) and (11) included.
This allows us to determine both the ferromagnetic and the paramagnetic solu-
tions. Because the E function has the obvious symmetry with respect to the
spin index reversal, we add the symmetry-breaking constraint n↑ − n↓ ≥ 0 to
single out one of the two ferromagnetic minima. However, minimization in the
full 16-dimensional parameter space is not always an easy task, especially near
the paramagnetic–ferromagnetic phase transition, where those two minima be-
come degenerate. Hence, we restrict a posteriori number of variables by putting
some of them equal to zero in accordance with the results of the full minimiza-
tion procedure. This allows us to improve the numerical accuracy of the obtained
solutions.

3.1. Integer band filling, n = 1 and 2
Let us consider first the case of half-filling, n = 2, discussed intensively re-

cently by many authors [4] in the context of orbitally-selective Mott transition in
Ca2−xSrxRuO4 system. In Fig. 1 we have plotted the band narrowing factor qlσ,
including, respectively, only the paramagnetic states in the half-filled case (top),
and with the ferromagnetic states included for the quarter-filled band case (bot-
tom). In the former case the electrons in the narrower band can become localized
in a continuous manner at the critical interaction magnitude Uc2 = 3.4, whereas
those in the wider band are still itinerant and localize via first-order transition for
Uc1 = 3.56. The intermediate region is then called partially localized (PL) phase.
Let us note that all displayed phases are of paramagnetic character (no ferromag-
netic solution has been found stable). These results are very similar to those of
Rüegg et al. [4], but differ from those of van Dongen et al. [4] obtained within quan-
tum Monte Carlo — dynamic mean-field theory (QMC-DMFT) method, where the
character of the phase transitions is different.

Next, we examine the quarter-filled case, i.e. n = 1 (cf. Fig. 1, bottom),
showing the band narrowing factor qlσ. For this particular situation, the system
transforms with the increasing U first discontinuously into an FM state, with the
electrons in the narrower band being fully polarized. The wider band is then
partially polarized, unlike in the equivalent-band model, with the orbital order-
ing included [11]. By increasing U further we observe a disappearance of the
minority-spin electrons in the wider band, as the system undergoes a transition
to the saturated ferromagnetic metallic (SFM) phase. For sufficiently high U ,
electrons in both bands localize simultaneously, forming ferromagnetic insulating
(FI) state. The SFM/FI phase boundary point located at U/5 = 4.8 in the lower
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Fig. 1. (top) U dependence of the band-narrowing factors q1 and q2, for the half-

-filling. The phases considered are PM and paramagnetic insulating (PI) as well as

the PL phase (see the main text). (bottom) The corresponding plot of qlσ for the

quarter filling. The phase transitions to the FM, SFM, and FI phases are marked by

the vertical lines.

part represents a quantum critical point. One should note that SFM–FI phase
boundary located at U = 24, is quite analogous to the original Brinkman–Rice
quantum critical point occurring in the nondegenerate band, except that now the
transition takes place between the ferromagnetic states. In the present situation
the orbital index l = 1, 2 replaces the spin quantum number for the nondegenerate
case. Explicitly, only the variables e = d↑ ≡ x, p1↑, and p2↑ have non-zero values
in SFM state. Thus, we can write down the ground-state energy function E (per
site) of SFM state in the following analytic form:

E = −Wx2(1− 2x2) + (U − 3J)x2, (15)
where W = (W1 + W2)/2. This expression is formally identical with that for the
single-band case [13]. Minimizing E with respect to x2, we obtain the physical



626 J. Jȩdrak, J. SpaÃlek, G. Zwicknagl

ground-state characteristics

E = EG = −W

4

(
1− U − 3J

2W

)2

, (16)

and

ql↑ = 1−
(

U − 3J

2W

)2

. (17)

Equation (16) provides the justification for the corresponding parabolic depen-
dence of ql↑ in the SFM state, as shown in Fig. 1 (bottom).

3.2. Partially filled case: n = 1.1 and 1.9

For the band filling slightly larger than 1.0, e.g. for n = 1.1, localization
in both bands is not possible, as now obviously some double occupancies must be

Fig. 2. (top) U -dependence of the reduced band narrowing factor γlσ = qlσnlσ ×
(1 − nlσ). (bottom) The band occupancies versus U , for n = 1.1. The phases and

the corresponding boundaries are separated by the vertical lines.
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present for an arbitrarily high value of U to fulfill the constraint (11). Guided by
the experience gained from the n = 1 case, we can make a conjecture about the
character of the ground state in the present situation. Thus, with the increasing U

we expect that the system should undergo a transition from PM to a ferromagnetic
state. This ferromagnetic state, in turn, should become saturated (SFM state) for
high enough U resulting in a state of the same kind as that in the (n = 1) case.
That is, only the variables e, d↑, p1↑, and p2↑ have non-zero values in this state.
However, as now d2

↑− e2 = 0.1 6= 0, we expect that for sufficiently high U = Uc we
find e = 0, in order to minimize the Coulomb repulsion, and then E is minimized
for p1↑ = 0. Thus, for U > Uc electrons in the narrower band localize, resulting
in a simple PL phase, for which all the variables except d↑ and p2↑ have non-zero
values. In other words, electrons in the narrow band are localized and that band is
fully occupied, forming a spin background for itinerant (1 ↑) quasiparticles. Those
predictions are confirmed by the detailed numerical analysis. In Fig. 2, top, we
have plotted the reduced band narrowing factor γlσ instead of qlσ, as its value is
well defined for values of nlσ close to zero or unity. In the bottom part of Fig. 2
we have plotted the corresponding occupation numbers. Interestingly enough, we
see that, firstly, the FM phase exists in a relatively narrow interval of U , and,
secondly, that the SFM–PL transition occurs for rather high value of Uc ≈ 41.5.

The results obtained for n = 1.0 and n = 1.1 suggest that for large U the
ground state of the system is ferromagnetic. However, with the increasing band
filling the character of this state changes as for n → 2 it is no longer favorable as
a non-zero value of e should be retained.

Next, we analyze the situation for the band filling n = 1.9 (cf. Figs. 3–
6). In Fig. 3, left, we display the energies of paramagnetic metallic (PM) and
ferromagnetic solutions, respectively, and show that for U = 3.4 we have the

Fig. 3. (left) U dependence of the ground-state energies of PM as well as of fer-

romagnetic metallic (FM) and saturated ferromagnetic metallic (SFM) solutions.

(right) Values of selected slave-boson mean field amplitudes. Phase transitions are

marked by the vertical lines.
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paramagnetic–ferromagnetic transition. To reveal the nature of those states, let
us analyze first the right part of Fig. 3, where some of the slave boson amplitudes
are plotted. For U < 3.4 we have an ordinary paramagnetic behavior, very much
alike in the earlier cases. However, for 3.4 < U < 3.78 only the variables p2↑, d↑, w↑,
and t2↓ have non-zero values. In other words, we have always one (2 ↑) electron
(forming the spin-background) and one of the four possible configurations for the
l = 1 orbital. Thus, in this case we also have effectively a one-band behavior,
for which in the limit U > 3.78 only p2↑ and d↑ are non-zero, just like for the
corresponding PL phase for the n = 1.1 case. In this state both d1 = d2 = 0, even
though the system is only partially spin-polarized.

Fig. 4. U dependence of the band narrowing factors qlσ for n = 1.9. Inset: correspond-

ing occupation numbers. Phase transitions are marked by the vertical lines.

In Fig. 4, we display both the band narrowing factors qlσ and the occupan-
cies (cf. the inset). In the PM phase electrons in both bands retain an itinerant
character. The PM–F transition represents now also the localization threshold
for electrons in the narrower band which becomes completely localized, polarized
and forms a spin background with n2↑ = 1, n2↓ = 0 (see the inset). Additionally,
both the (1 ↑) and (1 ↓) electrons remain itinerant for 3.4 < U < 3.78 composing
together with (2 ↑) electrons a partially localized FM phase, which subsequently
transforms into SFM state, where only (1 ↑) electrons remain itinerant. One
should note that the residual (n− 1) carriers per site acquire the bare band mass
in this state (q1↑ = 1). This is because the Hubbard interaction vanishes in the
SFM state and the hopping is not hampered by the Hund rule interaction.

The PM–FM transition is realized with the increasing amplitude of U . There
is however, another possibility, namely, that we can induce it by applying an
external magnetic field in the paramagnetic state as shown in Fig. 5. Apart from
this transition we expect also that an effective mass of electrons will become then
also spin-dependent. To analyze these effects in detail, in Fig. 5 (top part) we have
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Fig. 5. (top) Applied field-dependent mass enhancements for n = 1.9 and U = 3.2;

(bottom) corresponding orbital dependent spin polarizations (ml = nl↑ − nl↓) for both

bands. Phase transition is marked by the vertical line. Inset: detailed mass enhancement

for the narrower band below the localization threshold.

drawn their enhancement as a function of h = gµBHa/2 for the partially filled-band
configuration n = 1.9. The masses in the narrower (l = 2) band become infinite
(i.e. electrons localize) when the system undergoes a metamagnetic transition (as
shown in the bottom part of the figure). If the model parameter values specified
there, are taken in electronovolts, then the metamagnetic field is of the order of
100 T and should diminish fast with n → 2. The ferromagnetic phase is stable
even for n = 1.9, when the Hund rule is strong enough and overcomes the tendency
towards the antiferromagnetism (not discussed here). In the inset to Fig. 5 (top
part) we display the masses in the low-field range, and show their nonlinear field
dependence. The important feature of the transition in the applied field is that
it requires relatively low external perturbation in the range of meV, whereas the
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Fig. 6. Plot of ∆λ1 ≡ (λ1↓ − λ1↑)/J , ∆λ2 ≡ (λ2↓ − λ2↑)/J vs. U for n = 1.9.

corresponding critical interaction U , needed for the transitions displayed in Fig. 2,
is in the eV range.

In Fig. 6 we have determined the effective exchange field acting on the cor-
related electrons. It originates from the explicitly spin-dependent constraint (3),
and is related to the Lagrange multiplier λ

(2)
lσ , defined in (5). Their difference is

displayed in Fig. 6 in units of J and as a function of U . One should note that
the effective field difference ∆λl ≡ (λ(2)

l↓ − λ
(2)
l↑ )/J is of the order of U . It is

this effective field, which in conjunction with the Hund rule interaction stabilizes
ferromagnetism in a wide range of the band filling for n < 2.

4. Effective s–d (s–f) model

From the discussion above a clear division into the localized and itinerant
electrons emerges for 1 < n < 2, when the interaction is strong enough. This
division is achieved via a phase transition in which

∑
lσ nilσ electrons per site

decomposes into p localized and niσ itinerant particles. We provide now a simple
analytic argument and show that in the partially localized situation the model
represented by Hamiltonian (2) reduces to an effective s−d (s−f) model with
a proper form of kinetic exchange interactions. The argument is valid for an
arbitrary p, but for the present model with the orbital degeneracy (d = 2) p = 1.

In order to deal with the interaction terms, in the situation with the localized-
-itinerant mixture, we use the following identities involving the interaction term
in (2):

∑

l

n̂il↑n̂il↓ =
1
2

∑

lσ

n̂ilσ − 2
3

∑

l

S2
il↑, (18)

∑

l 6=l′;σσ′
n̂ilσn̂il′σ′ =

(∑

lσ

n̂il

)2

− 2
∑

l

n̂il↑n̂il↓ −
∑

lσ

n̂ilσ, (19)

and
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∑

l 6=l′
Sil · Sil′ =

(∑

l

Sil↑

)2

−
∑

l

S2
il↑. (20)

Next, we make the decomposition
∑

l Sil = Si + si, with S2
i = p

2 (p
2 + 1). This

means that we have subdivided the total spin into the conserved (localized) and
the itinerant parts. Employing this rule, taking into account also that

∑
l nilσ =

p+niσ, and projecting out the double occupancies in the localized Mott state, one
obtains up to a constant

H =
∑

ijσ

tij1a
†
iσajσ − 2J

∑

i

Si · si +
∑

i

Un̂i1↑n̂i1↓ +Hex, (21)

where tij1 is the larger of the two hopping integrals. The hopping in the narrower
band vanishes at the localization threshold because we have then ni2↑ + ni2↓ = 1
and therefore, a†i2σaj2σ = a†i2σ(1− n̂i2σ̄)aj2σ(1− n̂j2σ̄) = 0. Also, Hex contains the
kinetic exchange interaction in the localized states (band 2). It has the following
form [14]:

Hex =
∑

〈i,j〉

(
t2ij2
U

+
t2ij2

U + J

)(
Si · Sj − 1

4

)
. (22)

Obviously, this simple form of the effective Hamiltonian is still orbital-dependent,
since only a part of the electrons (that in a narrower band) localizes. It has
the form of s−d (s−f) Hamiltonian with the Hubbard interaction among the
remaining itinerant electrons. Actually, in the case n = 1.9, shown in Fig. 6, the
double occupancy d2

1 → 0, when electrons in the narrower band localize. In that
situation, the itinerant electrons become also strongly correlated, i.e. represented
by the effective Hamiltonian with the projected out double occupancies also for
the itinerant states, namely

H = t1
∑

〈ij〉σ
a†i1σ(1− n̂i1σ̄)aj1σ(1− n̂j1σ̄)− 2J

∑

i

Si · si +H′ex, (23)

where H′ex has now a more complicated structure, which will not be discussed in
detail here.

One should note that in this regime the natural limit is to be |t2| ≈ J , in
which the s−d exchange may become comparable to the kinetic exchange, since the
strong double exchange interaction sets in [15]. This may lead to ferromagnetism
well beyond n = 1 situation, but this topic should be analyzed separately.

5. Conclusions

The mixed (localized+itinerant) nature of the correlated quantum-
-mechanically indistinguishable electrons has been discussed for the case of a dou-
bly degenerate narrow band. It is connected with the assumed difference in band
width, W1 6= W2. The breakdown of the particle indistinguishability is accom-
plished through a phase transition. This indistinguishability breakdown takes the
extreme form in the limit of PL, where m2↑ = m2↓ = ∞ and m1↑ 6= m1↓ < ∞.



632 J. Jȩdrak, J. SpaÃlek, G. Zwicknagl

The two transitions shown in Fig. 1 (top part) for the case of the half-filled band
can be tested by applying the pressure in the case of appropriate Mott insulating
system. Also, the properties obtained here should be tested further on a model
involving realistic orbitals, including the orbital ordering, as well as the antiferro-
magnetism. The most stringent test for the existence of PL state should come from
the situation involving the hybridized orbitals. The inclusion of the hybridization
(i.e. of the hopping tll

′
ij with l 6= l′) would allow us to study the intermediate sit-

uation between the heavy fermion limit (t2 = 0, t12 6= 0, with atomic degeneracy
lifted) and the present situation (with t2 6= 0, t12 = 0). Also, the situation in an
anisotropic system modeled by, e.g., doubly degenerate band of eg type should be
considered in detail.
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B 40, 6817 (1989); R. Frésard, P. Wölfle, Int. J. Mod. Phys. B 6, 237 (1992) (Er-

ratum: ibid. B 6, 3087 (1992)); see also: J. SpaÃlek, W. Wójcik, in: Spectroscopy
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