
Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 4

Proceedings of the XII National School “Correlated Electron Systems...”, Ustroń 2006

Cooper Pair with Nonzero Momentum

in System with Spin Dependent Mass

of Quasiparticles

J. Kaczmarczyk and J. SpaÃlek∗

Marian Smoluchowski Institute of Physics,
Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

We consider a single Cooper pair with the spin dependent quasiparti-

cle masses, with and without applied magnetic field. Such situation takes

place for the strongly correlated electron systems, where a relatively strong

Hubbard interaction differentiates the quasiparticle states in the majority-

and the minority-spin subbands. In that situation, the two spin subbands in

an applied magnetic field are not only shifted one with respect to the other,

but also distorted differently, which results from the electronic correlations.

Under these circumstances, the fermionic particles composing the Cooper

pair, are quantum mechanically distinguishable. In result, the Cooper pair

has a nonzero momentum (i.e. produces a stationary current in a similar

manner as electron in the Bloch state), and there exists a critical value of

the attractive interaction, below which the bound Cooper-pair state is not

formed. The presence of the applied field (included via the Zeeman term)

does not alter the picture qualitatively. Importance of these results for the

formation of the Fulde–Ferrell–Larkin–Ovchinnikov phase in strongly corre-

lated systems is mentioned.

PACS numbers: 71.24.+q, 71.10.Li

1. Introduction

The Cooper pair bound state [1] represents one of standard two-particle
problems in quantum mechanics when we have an electron gas present as a back-
ground.

In the situation with strong Coulomb interaction, the quasiparticle mass in
magnetic field depends on the spin orientation. Namely, electrons in the spin-
-majority (σ = ↑) band have the quasiparticle mass m1 ≡ m↑ different than the
electrons with their spin in the opposite direction, m2 ≡ m↓ [2, 3]. This situation
takes place for instance in the CeCoIn5 superconductor [4]. A theory of supercon-
ductivity which would take account of spin dependent masses could be helpful in
describing such systems.
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In this paper we describe the Cooper pair with the spin dependent masses of
quasiparticles by means of modified Cooper approach, which provides a starting
point for the modified BCS theory of condensed superconducting state. We first
summarize the standard Cooper approach to the two-particle pairing problem.
Then, in Sect. 2, we describe how the dependence of masses on spin direction
changes the Landau–Fermi liquid theory and solve the Cooper problem with the
spin dependent masses. Numerical results obtained from this solution are provided
in Sect. 3. Finally, we summarize briefly our work and provide an outlook in Sect. 4.

1.1. Cooper pair — a brief summary

We consider a Fermi sea of noninteracting electrons, to which we add two
interacting electrons. The Schrödinger equation for such a system is as follows:

HΨ = EΨ (1)
with the Hamiltonian

H = − h̄2

2m
∇2

1 −
h̄2

2m
∇2

2 + V (r1 − r2). (2)

The pair wave function is represented as a superposition of the wave functions of
noninteracting electrons in volume V :

Ψ(r1, r2; σ1, σ2) =
1
V

∑

k1,k2

αk1,k2e
ik1r1+ik2r2χ(σ1, σ2), (3)

where χ(σ1, σ2) describes the spin-singlet state. To simplify the calculations we
make the transformation to the center of mass and relative coordinates, i.e. select
the center-of-mass variables

R =
r1 + r2

2
, Q = k1 + k2, (4)

as well as those representing the relative motion of particles

r = r1 − r2, k =
k1 − k2

2
. (5)

Obviously, they correspond to the real- and reciprocal-space variables, respectively.
The real-space pair wave function is then selected in the form

Ψ(R, r) =
1
V

eiQR
∑

k

αkeikr, (6)

where we have extracted from the summation the center-of-mass part, as the total
momentum Q is conserved. We now use the Schrödinger equation and assume
that the pairing potential in k space: Vk,k′ ≡ N

V

∫
V

e−ikrV (r)eik′rd3r, is attractive
(≡ −V0) at and above the Fermi surface (in the energy regime of width h̄ωD) and
zero elsewhere.

1.2. Pair binding energy

Following the standard Cooper procedure, we obtain the self-consistent equa-
tion for the binding energy ∆ in the form
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N

V0
=

∑

k∈WQ

1
εQ + εk − 2εF + ∆

, (7)

where εQ ≡ h̄2

2M Q2 is the center-of-mass kinetic energy, εk ≡ h̄2

2µk2 is that of

relative motion, and εF is the Fermi energy. Additionally, WQ is the range of
integration dependent on the pair center-of-mass momentum Q (cf. Fig. 2). In
the case of equal quasiparticle masses the stationary pair with Q = 0 has the max-
imum binding energy. The range of integration is spherically symmetric, therefore
we obtain an analytic solution in the well-known form [1]

∆ =
2h̄ωD

exp( 2
V0ρ(εF) )− 1

≈ 2h̄ωD exp
(
− 2

V0ρ(εF)

)
. (8)

An important thing to note is that the electrons bind only if the density of states
ρ(εF) 6= 0. Therefore, the background electronic gas plays a passive, but essential
role in having ∆ > 0. In the next section this role is amplified and qualitatively
changed by the fact that the masses are different, m↑ < m↓.

2. Cooper pair with spin dependent masses

In such a gas we deal with two types of particles: m1 > m2. Therefore, there
are also two dispersion relations

εk1 =
h̄2

2m1
k2

1, εk2 =
h̄2

2m2
k2

2. (9)

The Fermi energies for the two types of quasiparticles have to be equal. This
condition together with (9) yields the relation kF1 = kF2

√
m1/m2, which means

that unequal masses lead to the different radii of the Fermi spheres (cf. Fig. 1).

Fig. 1. Fermi spheres for the two spin subbands with different effective mass of the

corresponding particles and Q = 0.

This approach may seem unrealistic, because we did not include a Zeeman
term, which is essential in the process of mass splitting. However, there could exist
systems in which the quasiparticle mass is split even without an applied magnetic
field (for example the quark systems [5]). If we want to include magnetic field in
our calculations, the dispersion relations become shifted one with respect to the
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other by twice the Zeeman term†
{

εk1 = h̄2

2m1
k2

1 − gµB
h̄
2B,

εk2 = h̄2

2m2
k2

2 + gµB
h̄
2B.

(10)

2.1. Cooper problem with spin-split masses

We tackle this problem starting from Hamiltonian

H = − h̄2

2m1
∇2

1 −
h̄2

2m2
∇2

2 − gµBB(Sz
1 + Sz

2 ) + V (r1 − r2), (11)

which consists of the interaction V (r1 − r2) and the noninteracting part giving
dispersion relations of the form (10) or (9), the latter in the situation with the
applied field B = 0.

The pair wave function is, just as before, a superposition of wave functions
of noninteracting particles

Ψ(r1, r2; σ1, σ2) =
1
V

∑

k1,k2

αk1,k2e
ik1r1+ik2r2χ(σ1, σ2). (12)

To solve the problem we make the transformation to the center-of-mass and
relative coordinates which now looks a little differently (cf. Wróbel et al. [1])

R =
r1m1 + r2m2

m1 + m2
, Q = k1 + k2, (13)

and

r = r1 − r2, k =
k1m2 − k2m1

m1 + m2
. (14)

The transformed wave function and Hamiltonian are as follows, respectively:

Φ(R, r) =
1
V

eiQR
∑

k

αkeikr, (15)

H = − h̄2

2M
∇2

R − h̄2

2µ
∇2

r − gµBB(Sz
1 + Sz

2 ) + V (r), (16)

where as before M = m1+m2 and µ = m1m2
m1+m2

. We insert the above wave function
into the Hamiltonian and follow standard procedures, assuming that the potential
Vk,k′ ≡ N

V

∫
V

e−ikrV (r)eik′rd3r is attractive when all the particles composing
Cooper pairs with momenta (Q, k) and (Q, k′) are in a region above the Fermi
surface of width h̄ωD (cf. Fig. 2). Having done that, we arrive at the new gap
equation.

2.2. Pair binding energy

The gap equation at first sight looks very alike the standard one. The
fundamental difference is the range of integration WQ (cf. Fig. 2 and the ex-
planation below)

†Throughout this paper we neglect the effect of the magnetic field on the orbital
motion, as we consider weak-field limit only.
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Fig. 2. The integration range WQ, which is defined as the set WQ ≡ {W1} ∩ {W2 +

Q} − m1
M

Q, where Wi ≡ {k| h̄2k2

2mi
∈ [εF, εF + h̄ωD]}. By adding a vector to a region in

reciprocal space we mean shifting this region. In effect, WQ is nonspherical, as marked.

N

V0
=

∑

k∈WQ

1
εQ + εk − 2εF + ∆

. (17)

Now, we make simplifications to the gap equation, so that it assumes a little more
transparent form. Namely, by using the notation




δεk1 = εk1 − εF,

δεk2 = εk2 − εF,

εQ + εk − 2εF = εk1 + εk2 − 2εF = δεk1 + δεk2 ,

(18)

we transform the gap equation to the form
N

V0
=

∑

k∈WQ

1
δεk1 + δεk2 + ∆

. (19)

What can be seen is that the regions in the reciprocal space, which contribute
most to the pairing, are those for which δεk1 +δεk2 ≈ 0, i.e., the particles are close
to the corresponding Fermi surfaces. Therefore, we expect the pairing to be strong,
when two conditions on the pairing interaction region WQ are fulfilled. First, for
a large part of the interaction region, the particles are not far from their Fermi
surfaces. Second, the region has a maximum possible volume. In our procedure
we optimize the binding energy with respect to the pairing interaction region WQ,
which is fully characterized by the center-of-mass momentum Q. Therefore, all
we need to do is to search for the solution with the lowest energy by varying the
magnitude of the center-of-mass momentum Q.
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3. Results

In this section we present results of our numerical calculations. In Fig. 3 we
plot the dependence of the pairing-potential magnitude V0 on the center-of-mass
momentum Q obtained directly using the gap Eq. (19) and selecting the value
of the gap magnitude, as indicated. The dependence of binding energy ∆ on the
momentum Q for several values of V0 is shown in Fig. 4. These results are obtained
by an interpolation method, because of the character of the gap equation (it is

Fig. 3. Dependence of pairing potential magnitude V0 on the center-of-mass momen-

tum Q for selected values of the binding energy ∆. Qopt is the optimal value of mo-

mentum Q.

Fig. 4. Dependence of ∆ on the pair momentum Q for selected values of pairing-

-potential magnitude without applied field (dotted lines) and in the field of 10 T (solid

lines). The masses are specified.
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easy to calculate V0 for a given ∆, but not the other way round). What can be
seen from the figures is that the most energetically favorable solution is the one
with nonzero center-of-mass momentum, approximately having the value

Q ≈ 1.4(kF1 − kF2). (20)
This is just because for such center-of-mass momentum Q the region in reciprocal
space, where δεk1 +δεk2 ≈ 0 is large, and the volume of the interaction region WQ

do not reduce enough to destabilize the pairing (that actually happens for greater
Q, as marked by the dots).

It can be seen from Fig. 4 that the solution in the absence of magnetic field
has a lower binding energy than the solution for B = 10 T. The case of split
masses without a magnetic field B is unrealistic. In real systems the presence of
the field enforces the mass splitting, i.e. for stronger fields we would get a greater
splitting and a smaller binding energy. The dependence of mass on magnetic field
and its effect on pairing will be discussed elsewhere. Another characteristic feature
is that for V0 <∼ 0.30 eV the pair does not bind, which means that in the case of
the split masses there exists a lower critical value of the potential needed to bind
quasiparticles into a pair.

4. Summary and outlook

In this paper we have considered the Cooper problem with spin dependent
masses of quasiparticles. Explicitly, we have analyzed the dependence of pair
binding energy ∆ on the pair momentum Q, the state analogous to the Fulde–
Ferrell–Larkin–Ovchinnikov phase (FFLO) in the applied magnetic field. The
magnetic field was included only via Zeeman term. Next step is to include the
spin dependent masses in a BCS-like theory, which would be quite similar to
the FFLO formalism [6]. One could also consider ellipsoidal dispersion relations,
which are relevant for quasi 2-dimensional systems with spin dependent masses,
like CeCoIn5. A complete inclusion of the applied magnetic field (i.e. with the
orbital effects incorporated) would also be an improvement, though we do not
expect this task to be easy.
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