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We calculated the differential conductance G as the function of the bias

voltage V across the tunnel junction between a normal metal or a conven-

tional superconductor and an inhomogeneous superconductor with charge

density waves. Spatial averaging over random domains with varying super-

conducting and normal state properties was carried out. For high-Tc oxides,

irregularly distorted charge density wave patterns with spatially scattered

values of various parameters were earlier shown to manifest themselves in

a great body of experimental data. The results of calculation were applied

to explain the well-known dip-hump structure in the G(V ) dependence for

Bi2Sr2CaCu2O8+δ and other cuprates.

PACS numbers: 73.43.Jn, 71.45.Lr, 74.50.+r, 74.81.–g

1. Introduction

Tunnel quasiparticle differential conductance versus bias voltage depen-
dences G(V ) = dJ/dV (hereafter coined as current–voltage characteristics, CVCs)
unveil characteristic gap-like features both for conventional Bardeen−Cooper–
Schrieffer (BCS) superconductors and high-Tc oxides [1, 2]. Here J is the quasipar-
ticle current, V means voltage. For cuprates in addition to the superconducting
gap ∆, which is believed to have a d-wave symmetry, a pseudogap Π of the dis-
puted nature is often seen for many cuprates [1, 3]. We think that the pseudogap is
related to a phenomenon competing with the Cooper pairing, most probably being
a charge density wave (CDW) instability [4, 5]. CDW formation is accompanied
by a destruction of the nested (d) sections on the Fermi surface (FS), where the
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CDW-driven gap is developed. At the same time, a unique superconducting gap ∆
appears both on d and non-nested (n) FS sections [6] (see below).

CVCs for high-Tc oxide junctions have a number of peculiarities. They are
especially clearly seen in Bi2Sr2CaCu2O8+δ (BSCCO) [2, 7, 8] that has become
a testing ground for many ideas in theoretical superconductivity. In particular,
CVCs for S–I–N junctions (S stands for a superconductor, I for an insulator, and
N for a normal metal) are nonsymmetric with various amplitudes of the coherent
peaks for branches for V > 0 or V < 0 and shapes of the so-called dip-hump
structures (DHSs) — one per each branch — that are located at biases larger than
the superconducting coherent peak positions. The loss of the CVC symmetry is
also observed for junctions including other cuprates.

The majority of S–I–N junctions reveal a DHS only for one polarity of V .
Nevertheless, there are also observed two symmetrically located DHSs (one per
branch) but with amplitudes that can differ drastically [9]. The BCS-based theory
of tunneling in superconducting junctions leads to symmetrical CVCs even if a
junction is non-symmetrical. A lot of theories have been proposed to explain
the above-mentioned nonsymmetricity, but the problem has not yet been resolved.
The main trend is to explain the presence of the DHS as a manifestation of strong-
-coupling superconducting effects, conspicuous due to the quasiparticle interaction
with a certain boson mode [9–11]. However, there is a lot of evidence (at least
in BSCCO and related compositions) that the pseudogap Π feature, which we
attribute to the CDW, coexists with a superconducting gap below Tc within a
wide doping range [3–5].

Therefore, we consider that the DHS occurs due to the overlap of the coher-
ent peaks induced by the Cooper and pseudogap pairings. In this model, the hump
is nothing else but a smeared peak caused by Π , while the dip is simply a transi-
tion region between those two peaks. Such an interpretation is directly supported
by observations of periodic structures in BSCCO taking advantage of various ex-
perimental methods [12, 13]. Photoemission studies reveal the 4a0 × 4a0 charge
ordered “checkerboard” state (a0 is a lattice constant) in Ca2−xNaxCuO2Cl2 [14].
A dynamical charge inhomogeneity probably connected to the stripe order has
been recently observed in La2−xSrxCuO4 (with x = 0.07, 0.15) [15].

We suppose s-symmetry for both the superconducting (SOP) and dielec-
tric (DOP) order parameters (OPs) in agreement with the self-consistent theory
of CDW superconductors (CDWSs) developed by us earlier [16] on the basis of
the Bilbro–McMillan model [6], with both the gaps, superconducting ∆ and di-
electric Σ , having s-symmetry. In this work, only nonsymmetric S–I–N junctions
are studied. Symmetrical superconductor–insulator– superconductor (S–I–S) junc-
tions will be considered in a separate paper.
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2. Theoretical background

The detailed formulation of the self-consistent theory for a homogeneous
partially gapped CDWS can be found elsewhere [16]. Here, we shall point out its
fundamental features relevant to the subject concerned.

The FS of the ungapped homogeneous CDWS (i.e. above both super-
conducting-, Tc, and CDW (structural-transition), Td, critical temperatures) in-
cludes (i) two congruent (“nested”, i = 1, 2) sections, where the degenerate (d)
quasiparticle spectrum branches ξ1,2(p) reckoned from the common Fermi level
are linked according to the relationship ξ1(p) = −ξ2(p + Q), Q being the CDW
vector, and (ii) the remaining part (i = 3), where the quasiparticle spectrum
ξ3(p) is non-degenerate (n). The extent of such an FS partition is described by
a parameter µ = Nd(0)/ [Nd(0) + Nn(0)], where Nd(0) and Nn(0) are the quasi-
particle densities of states (DOSs) at the d and n sections of the FS, respectively.
The parameter µ by definition falls within the interval 0 < µ < 1. The CDWS
Hamiltonian includes the interaction terms responsible for the dielectric and su-
perconducting gappings of the FS. The superconducting gapping is a result of the
BCS pairing and spans the whole FS.

Had the dielectric pairing constant been switched off, one would have ob-
tained a “parent” BCS superconductor, characterized by the “bare” zero-T or-
der parameter ∆∗

0, i.e. the corresponding critical temperature would have been
T ∗c = γ

π∆∗
0 (γ = 1.7810 . . . is the Euler constant, and the Boltzmann constant

kB = 1) and within the interval 0 ≤ T ≤ T ∗c its OP ∆∗ would have varied fol-
lowing the Mühlschlegel dependence ∆∗(T ) = ∆∗

0Mü(T/T ∗c ), with Mü(0) = 1, a
uniform gap ∆∗(T ) being developed on the whole FS. On the other hand, if the
constant of interaction that is responsible for the Cooper pairing had been switched
off, we would have had, at T < T ∗d , a parent CDW-metal (CDWM) phase with the
dielectric OP Σ̃∗ = Σ∗eiϕ, characterized by the amplitude Σ∗ and the phase ϕ.
The phase ϕ is fixed by various factors both in the excitonic and Peierls scenarios,
and acquires the values either 0 or π in the first case or an arbitrary value in the
Peierls state. The parameters µ, ∆∗

0, Σ∗
0 , and ϕ comprise a complete set of “bare”

parameters to describe the CDWS.
In the framework of the self-consistent theory of the partially gapped CDWS,

the superconducting and dielectric gappings can coexist only if the relationship
Σ∗

0 > ∆∗
0 is satisfied [16]. Hence, as the temperature becomes lower, the CDWS

undergoes first the dielectric (structural) phase transition at the actual Td, which
therefore coincides with T ∗d (T ∗d = Td). As T continues to decrease, the CDWS
behaves as its CDWM parent phase, i.e. the OP Σ̃ (T ) = Σ̃∗

0 Mü(T/Td) and the
corresponding dielectric gap |Σ̃ (T )| appears on the d sections of the FS until the
actual superconducting critical temperature T c < Td is reached. For 0 < T < Tc,
the resulting self-consistent OP ∆ behaves as ∆(T < T c) = ∆0Mü(T/Tc) with

∆0 = (∆∗
0Σ

∗−µ
0 )

1
1−µ < ∆∗

0, (1)
and Tc = γ

π∆0, so that the unique gap ∆(T ) develops on the whole FS [6]. Hence,
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the “combined” uniform gap

D(T ) =
√

∆2(T ) + Σ 2(T ) (2)
appears on the d FS sections and behaves as D(T < T c) = Σ∗

0 Mü(T/Td). It
comprises a smooth continuation of Σ (T ) into the T < Tc region.

In what follows, the temperature Green functions (GFs) of the CDWS will
be used as input quantities. To calculate quasiparticle tunnel currents only three
of them GCDWS

n (p, ωn), GCDWS
d (p, ωn), and GCDWS

c (p,ωn) are necessary [5], where
ωn = (2n + 1)πT , n = 0,±1,±2, . . . The first and the second GF (n and d)
correspond to the quasiparticle propagation from the relevant FS section: n or d.
The Green function GCDWS

c corresponds to the CDW pairing.
The quasiparticle tunnel current J through the S–I–N junction between a

homogeneous CDWS and a normal metal or a BCS superconductor is calculated
according to the Larkin–Ovchinnikov approach [17]. In our case, it is a sum of
three terms Ji,

J(V ) =
∑

i=n,d,c

Ji(V ), (3)

of the same structure

Ji ∝ 1
R

Re
∫ ∞

−∞
dω′

∫ ∞

−∞
dω

Im GCDWS
i (ω′)GN,BCS(ω)

ω′ − ω + eV + i0
. (4)

Here, R is the tunnel resistance of the junction in the normal state, and V ≡
V N − VCDWS is the bias voltage across the junction reckoned from the potential
of the CDWS electrode. Temporal Green’s functions GCDWS

i (ω) can be obtained
from GCDWS

n (p, ωn), GCDWS
d (p, ωn), and GCDWS

c (p,ωn) by the well-known proce-
dure [18].

The zero-T CVC feature points of the quasiparticle current (3) through a
CDWS–I–N (or CDWS–I–BCS) junction are located at biases eV = ±∆ and
±D [or eV = ± (∆ + ∆BCS) and ± (D + ∆BCS)]. The main distinction from the
CVC in the BCS–I–N case is the absence of the symmetricity with respect to
the inversion of the bias voltage sign. The total current (3), the CDWS–I–N
(or CDWS–I–BCS) junction is composed of three components: Jn, Jd, and Jc.
The symmetricity of the currents Jd and Jn is the same as for tunnel junctions
involving normal metals and BCS-like superconductors, Jd,n(−V ) = −Jd,n(V ),
while Jc(−V ) = Jc(V ). The anomalous behavior of the Jc component is connected
to the dependence of the Green function GCDWS

c (p, ωn) on Σ rather than on Σ 2.
The summation of components makes the total J(V ) and the corresponding G(V )
nonsymmetric.

The CVC peculiarities of the Jd and Jc components at eV = ±D [or
eV = ± (D + ∆BCS)] can either enhance or compensate each other. In the lat-
ter case, the logarithmic singularity can even be transformed into a cusp (in the
limit ∆,∆BCS → 0). The nonsymmetricity of G(V ) for tunnel junctions involving
CDWSs constitutes one of the key points of the proposed theory.
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The second key point of our theory is connected with the intrinsic nonho-
mogeneity of the CDWS state in high-Tc cuprates, which is inherent even to the
best BSCCO single-crystal specimens. First of all, we would like to point at reg-
ular modulated structures of charge distribution in BSCCO, including stripe-like
and checkerboard ones, which were found in a number of experiments (see, e.g.,
Refs. [12–15, 19]). Such modulated structures remarkably resemble CDWs, and
their appearance even correlates with that of the pseudogap [19].

At the same time, it is well known that ∆ and Π values are distributed over
the cuprate samples’ surfaces in a patch-like irregular manner. We insist that small
energy gaps with large and narrow coherence peaks and larger gaps with lower and
broadened peaks have different nature and are generated by superconducting and
CDW OPs, although many authors consider both types of gaps as associated with
superconductivity.

3. Results of calculation
Each of the model parameters may have a certain dispersion, and all the four

can be scattered concurrently, in accordance to what happens in cuprates. But
it would be very difficult to analyze the results of such calculations. Therefore,
we shall consider the variation of each parameter separately to trace the tendency
which such a variation might bring about. Each control parameter x was regarded
scattered within the interval [x0 − σ, x0 + σ] around the mean value x0, according
to the Gauss probability distribution law; σ is a dispersion. The current J(V )
was averaged over this distribution. This procedure was followed by the numerical
differentiation over V with an arbitrarily chosen differentiation interval δV , which
gave us the conductance spectra G(V ) = RdJ/dV . For sufficiently small δV the
results were weakly dependent on δV . Therefore, throughout the paper we used the
value δV = ±2.5 meV. One should note that such kind of a numerical calculation
reasonably well mimics the experimental results obtained from the J(V ) raw data
by their differentiation.

First, we consider the dispersion of the bare SOP ∆∗
0. The corresponding de-

pendences G(V ) are shown in Fig. 1a for a BSCCO–I–V3Si junction. The phase ϕ

is chosen equal to π to fit the experimental CVCs [2, 7], when the DHS reveals
itself for negative V . One sees that the D-driven singularities remained almost
intact while averaging, and no structures similar to the dip-hump one are ob-
served. Therefore, the dispersion of the ∆∗

0 parameter alone turns out insufficient
to explain the experimental data.

The results of calculations resemble the observed G(V ) dependences for
BSCCO much more if it is the parameter Σ∗

0 that is assumed to scatter (Fig. 1b).
Indeed, according to our basic equations, all the four CVC peculiarities eV =
± (∆ + ∆BCS) and ± (D + ∆BCS) become smeared, although to the various ex-
tent: the large singularities eV = ± (∆ + ∆BCS) almost preserve their shape, the
large singularity eV = − (D + ∆BCS) transforms into a DHS, and the small one
eV = (D + ∆BCS) disappears on the scale selected. The one-polarity character of
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the DHS appropriate to experimental CVCs [2] is reproduced excellently. Owing
to the relationship (1), the actual parameter ∆ also scatters, but, due to the small
value of µ, this fluctuation becomes too small to be observed in the plot.

In Fig. 2 the dependences G(V ) are displayed for a BSCCO–I–N tunnel
junction. As is well known, the type of the ∆-related singularity changes from

Fig. 1. (a) Dependences of the tunnel conductance G on voltage V for the junction

Bi2Sr2CaCu2O8+δ (BSCCO)–I–V3Si at a temperature of T = 4.2 K. I symbolizes in-

sulator. Relevant parameters of the BSCCO are as follows: the bare dielectric and

superconducting gaps Σ∗
0 = 50 meV, ∆∗

0 = 50 meV, the dielectric gapping parameter

µ = 0.1, the phase of the dielectric order parameter ϕ = π. The superconducting gap

of V3Si at T = 0 is ∆BCS = 2.3 meV. The dispersion δ∆∗
0 of ∆∗

0 is shown in the legend.

(b) The same as in part (a) but with the spread δΣ∗
0 of Σ∗0.

Fig. 2. The same as in Fig. 1b but for the junction BSCCO–I–N, where N stands for a

normal metal. The dotted curve (〈deriv〉) was numerically calculated not directly from

integral (4) with the subsequent differentiation, as the rest of the curves in all figures,

but by the analytical differentiation of Eq. (4) with the subsequent numerical integra-

tion. Comparison with the experimental data shows that the so-calculated 〈deriv〉-curve

overestimates the gap-related features of G(V ).
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the steep jump for an S–I–S′ sandwich, where S′ stands for a superconductor
different from S, into a square-root peculiarity for an S–I–N one. The same is
true for our case when a CDWS electrode is inserted instead of an S one. The
dotted curve denotes an unaveraged dependence obtained by a direct numerical
calculation of the conductance G(V ), which in its turn had been found after a
preliminary differentiation of Eq. (4) before its integration. All other dependences
were found by a differentiation of the numerically calculated integral (4). As we
have already mentioned, such a method is a better fit to the usual procedure
of getting G(V ) from the J(V ) measurements. The solid curve corresponds to
the absence of any CDW gap scatter, whereas next two dependences show how
the sample nonhomogeneity may distort the intrinsic square-root singularity at
eV = −D and convert it into a DHS. It is exactly what is observed in experiments
[2, 7, 8]. One should underscore that a DHS position is governed by the DOP
phase ϕ, which is thus a fitting parameter. If ϕ = π/2 or in the absence of the
preferred surface DOP phase, DHSs would reveal themselves symmetrically for
both V polarities.

It is important to recognize that experimental CVCs demonstrate features
appropriate both to averaging over ∆∗

0 (Fig. 1a) and Σ∗
0 (Figs. 1b and 2).

4. Conclusions
Thus, assuming the CDW origin of the DHS in tunnel spectra of high-Tc

oxides, in particular, BSCCO, made it possible to qualitatively describe the CVCs.
On the other hand, the widely spread alternative explanation [11] of the DHS,
which is based on the existence of a certain boson mode of an unknown nature
with the energy Ω , cannot account for the observed non-symmetrical form of the
CVCs. In addition, a wide-range oxygen doping of BSCCO leads to the shift of
both the ∆ and DHS locations, which are not linked with each other by any simple
relationship [20]. At the same time, in the framework of the boson-based approach
the DHS in the S–I–N junctions should be positioned at eV = ∆ + Ω in S–I–N
and eV = 2∆ + Ω in S–I–S junctions.

In our scenario, the locations of ∆ and DHS are also correlated, which is
traced while doping the material. Nevertheless, the link between two quantities
is rather complicated, because the D-peculiarity position depends on the doping-
-driven shift of Td in a twofold non-linear way: through Σ and ∆. The latter
quantity, in its turn, also depends on Σ . The above calculations show the inaccu-
racy of the conclusion [10] that a strong observed dip cannot be described under
the assumption of its non-superconducting nature. It should be noted that our
conclusions, although being obtained assuming the s-wave symmetry of both OPs,
are quite general and applicable to the situation when their symmetry is reduced
(e.g., for the d-wave symmetry).
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