
Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 4

Proceedings of the XII National School “Correlated Electron Systems...”, Ustroń 2006
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We argue that in a strongly correlated electron system collective instan-

ton excitations of the phase field (dual to the charge) arise with a great degree

of stability, governed by gauge flux changes by an integer multiple of 2π. By

unraveling consequences of the nontrivial topology of the charge gauge U(2)

group, we found that the pinning of the chemical potential and the zero-

-temperature divergence of charge compressibility define a novel “hidden”

quantum criticality on verge of the Mott transition governed by the protec-

torate of stable topological numbers rather than the Landau paradigm of the

symmetry breaking.

PACS numbers: 74.20.Fg, 71.10.Pm

1. Introduction

It is believed that the ultimate complication on the study of electronic prop-
erties of the many-body systems is due to the inter-particle interactions. Some-
times, one can deal away this problem by invoking the Fermi-liquid (FL) theory [1],
but now it is well understood that the Coulomb interaction problem falls in a
new, non-Fermi liquid universality class. There is a number of examples including
e.g. superfluidity, high temperature superconductivity, and the fractional quan-
tum Hall effect, where quantum coherence manifests in various dramatic ways and
there is a very difficult task to describe them with the help of the independent
particle picture. A major complication in dealing with interaction effects is the
notorious complexity of the underlying theory. Among the electronic Hamilto-
nians relevant for interacting systems the Hubbard model [2] and t−J model as
its descendant [3] are considered as those that contain the essential ingredients for
understanding the physics of correlated electrons. An essential pre-requisite to the
construction of the theory is a solid understanding of the fundamental symmetries
involved in the problem under study. In a many-body system boundary conditions
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are encoded in the symmetries and in the Hubbard model they are represented
by the charge U(1) gauge and spin rotational SU(2) groups relevant for the oc-
currence of the superconducting and magnetic orderings. The symmetry related
boundary conditions superimposed on the many-body wave function are then re-
flected in the topological structure of the configuration space. In particular, for
multiply connected configuration spaces novel features can arise as documented
for example by the Aharonov–Bohm effect [4] governed by the multiply connected
U(1) group manifold.

Following the Feynman path integral description of the quantum mechan-
ics [5] new possibilities arise when the space of trajectories falls into disconnected
pieces and the essential question is how to weight the different path. When the
homotopy class of the symmetry group governing the quantum dynamics is non-
trivial as for the multiply connected U(2) = U(1)⊗SU(2) group manifold pertinent
for the Hubbard model, the amplitude assigned to a trajectory depends not only
on permutations experienced by particles which follow the trajectory but also on
other aspect of their paths by which they wind around one another. Since the
homotopy class π1[U(2)] = Z forms a set of integer winding numbers the topolog-
ical structure of the configuration space is nontrivial, ambiguities may arise when
attempts are made to specify a value for the phase of a wave function for the
whole configuration space. Thus the problem we are facing is that of many-body
quantum mechanics on a multiple connected configuration space. According to the
general rules of the Feynman path integrals in the multiple connected configura-
tion space, one has divide the space of paths into homotopy classes parameterized
by winding numbers, and rewrite the path integral as a sum of sub-integrals, for
each of which such class, respectively [6].

In the present paper we put this program into practice and develop a spin-
-charge unifying description for interacting electrons given by the Hubbard model.
It is based on the time-dependent local gauge transformations to disentangle the
Coulomb interaction. The collective variables for charge and spin are isolated in a
form of the space-time fluctuating U(1) phase field and the rotating spin quanti-
zation axis governed by the SU(2) symmetry, respectively. As a result, interacting
electrons appear as composite objects consisting of bare fermions with attached
U(1) and SU(2) gauge fields. Finally, we unravel the link between the nontrivial
topological structure of the resulting U(2) = U(1) ⊗ SU(2) configurational space
for gauge fields and the novel type of quantum criticality.

2. Hubbard Hamiltonian

Our starting point is the purely fermionic Hubbard Hamiltonian H ≡
Ht +HU :

H = −t
∑

〈rr′〉,α
[c†α(r)cα(r′) + h.c.] + U

∑
r

n↑(r)n↓(r). (1)

Here, 〈r, r′〉 runs over the nearest-neighbor (n.n.) sites, t is the hopping amplitude,
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U stands for the Coulomb repulsion, while the operator c†α(r) creates an electron
with spin α =↑, ↓ at the lattice site r, where nα(r) = c†α(r)cα(r). Usually, working
in the grand canonical ensemble a term is added to H in Eq. (1) to control the
average number of electrons,

H → H − µ
∑

r

n(r) (2)

with µ being the chemical potential and n(r) = n↑(r) + n↓(r) the number op-
erator. It is customary to introduce Grassmann fields, cα(rτ) depending on the
“imaginary time” 0 ≤ τ ≤ β ≡ 1/kBT (with T being the temperature) that satisfy
the anti-periodic condition cα(rτ) = −cα(rτ + β), to write the path integral for
the statistical sum Z =

∫
[Dc̄Dc]e−S[c̄,c] with the fermionic action

S[c̄, c] = SB [c̄, c] +
∫ β

0

dτH[c̄, c], (3)

that contains the fermionic Berry term

SB[c̄, c] =
∑
rα

∫ β

0

dτ c̄α(rτ)∂τ cα(rτ), (4)

that will play an important role in our considerations.

3. Spin-charge U(2) reference frames

The standard scheme for dealing with interacting electrons is to employ the
Hubbard–Stratonovich transformation followed by a saddle-point analysis. It turns
out, however, that a straigthforward implementation of this approach is beset with
a number of problems. However, these difficulties can be circumvent in a scheme
that is firmly rooted in the gauge symmetries of the Hubbard model.

3.1. Rotating SU(2) spin reference frame

In order to maintain spin-rotational invariance, one should consider the spin-
-quantization axis to be a priori arbitrary and integrate over all possible directions
in the partition function. For this purpose we write the density–density product
in Eq. (1), following Ref. [7], in a spin-rotational invariant way

HU = U
∑

r

{
1
4
n2(rτ)− [Ω(rτ) · S(rτ)]2

}
, (5)

where Sa(rτ) = 1
2

∑
α α′c†α(rτ)σ̂αα′ac′α(rτ) denotes the vector spin operator (a =

x, y, z) with σ̂a being the Pauli matrices. The unit vector

Ω(rτ) = [sinϑ(rτ) cos ϕ(rτ), sinϑ(rτ) sin ϕ(rτ), cosϑ(rτ)] (6)
written in terms of polar angles labels varying in space-time spin-quantization
axis. The spin–rotation invariance is made explicit by performing the angular
integration over Ω(rτ) at each site and time. By decoupling spin and charge
density terms in Eq. (5) using auxiliary fields %(rτ) and iV (rτ) respectively, we
write down the partition function in the form
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Z =
∫

[DΩ ]
∫

[DVD%]
∫

[Dc̄Dc] exp (−S [Ω , V, %, c̄, c]) , (7)

where [DΩ ] ≡ ∏
rτk

1
4π sin ϑ(rτk)dϑ(rτk)dϕ(rτk) is the spin-angular integration

measure. The effective action reads

S [Ω , V, %, c̄, c] =
∑

r

∫ β

0

dτ
[%2(rτ)

U
+

V 2(rτ)
U + i

V (rτ)n(rτ)

+2%(rτ)Ω(rτ) · S(rτ)
]

+ SB [c̄, c] +
∫ β

0

dτHt[c̄, c]. (8)

3.2. U(1) rotor charge frame
To isolate strongly fluctuating modes generated by the Hubbard term ac-

cording to the charge U(1) symmetry we write the fluctuating “imaginary chem-
ical potential” iV (rτ) as a sum of a static V0(r) and periodic function V (rτ) =
V0(r) + Ṽ (rτ) using the Fourier series

Ṽ (rτ) =
1
β

∞∑
n=1

[Ṽ (rωn)eiωnτ + c.c.] (9)

with ωn = 2πn/β (n = 0,±1,±2) being the (Bose) Matsubara frequencies. Now,
we introduce the U(1) phase field φ(rτ) via the Faraday-type relation

φ̇(rτ) ≡ ∂φ(rτ)
∂τ

= exp (−iφ(rτ))
1
i

∂

∂τ
exp(iφ(rτ)) = Ṽ (rτ). (10)

Furthermore, by performing the local gauge transformation to the new fermionic
variables fα(rτ):

[
cα(rτ)

c̄α(rτ)

]
=

[
z(rτ) 0

0 z̄(rτ)

][
fα(rτ)

f̄α(rτ)

]
, (11)

where the unimodular parameter |z(rτ)|2 = 1 satisfies z(rτ) = exp(iφ(rτ)), we
remove the imaginary term i

∫ β

0
dτ Ṽ (rτ)n(rτ) for all the Fourier modes of the

V (rτ) field, except for the zero frequency. Subsequent SU(2) transformation from
fα(rτ) to hα(rτ) operators,

[
f1(rτ)

f2(rτ)

]
=

[
ζ1(rτ) −ζ̄2(rτ)

ζ2(rτ) ζ̄1(rτ)

] [
h1(rτ)

h2(rτ)

]
(12)

with the constraint |ζ1(rτ)|2 + |ζ2(rτ)|2 = 1 takes away the rotational dependence
on Ω(rτ) in the spin sector. This is done by means of the Hopf map

R(rτ)σ̂zR†(rτ) = σ̂ ·Ω(rτ) (13)
that is based on the enlargement from two-sphere S2 to the three-sphere S3 ∼
SU(2). The unimodular constraint can be resolved by using the parameterization

ζ1(rτ) = exp
(
− i

2
[ϕ(rτ) + χ(rτ)]

)
cos

(
ϑ(rτ)

2

)
,

ζ2(rτ) = exp
(

i
2
[ϕ(rτ)− χ(rτ)]

)
sin

(
ϑ(rτ)

2

)
(14)
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with the Euler angular variables ϕ(rτ), ϑ(rτ), and χ(rτ), respectively. Here,
the extra variable χ(rτ) represents the U(1) gauge freedom of the theory as a
consequence of S2 → S3 mapping. One can summarize Eqs. (11) and (12) by the
single joint gauge transformation exhibiting electron operator factorization

cα(rτ) =
′∑
α

Uαα′(rτ)h′α(rτ), (15)

where

U(rτ) = z(rτ)R(rτ) (16)
is a U(2) matrix which rotates the spin-quantization axis at site r and time τ .
Equation (15) reflects the composite nature of the interacting electron formed
from bosonic spinorial and charge degrees of freedom given by Rαα′(rτ) and z(rτ),
respectively, as well as remaining fermionic part hα(rτ).

4. Effective phase-angular action

In this section, we define a path integral representation of the partition
function. The introduction of a fluctuating spin-quantization axis and phase field
for the charge in the functional integral allows us to consider spin and charge
fluctuations on equal footing.

4.1. Tracing massive variables
We calculate the expectation value of the static (zero frequency) part of the

fluctuating electrochemical potential V0(r) by the saddle point method to give

V0(r)= i
(

µ− U

2
nh

)
≡ iµ̄, (17)

where µ̄ is the chemical potential with a Hartree shift originating from the
saddle-point value of the static variable V0(r) with nh = nh↑ + nh↓ and nhα =
〈h̄α(rτ)hα(rτ)〉. Similarly in the magnetic sector

ρ(rτ) =

{
(−1)r∆c,

±∆c,
(18)

where ∆c = U〈Sz(rτ)〉 sets the magnitude for the Mott-charge gap [8]. The two
choices delineated in Eq. (18) correspond to the saddle point of the “antiffero-
magnetic” (with staggering ∆c) or “ferromagnetic type”. Let us note that the
notion ferromagnetic (antifferomagnetic) here does not mean an actual long-range
ordering — for this the angular spin-quantization variables have to be ordered as
well. In the new variables the action in Eq. (8) assumes the form

S [
Ω , φ, %, h̄, h

]
= SB[h̄, h] +

∫ β

0

dτHΩ ,φ[ρ, h̄, h]

+S0 [φ] + 2
∑

r

∫ β

0

dτA(rτ) · Sh(rτ), (19)

where Sh(rτ) = 1
2

∑
α γh̄α(rτ)σ̂αγhγ(rτ). Furthermore,
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S0[φ] =
∑

r

∫ β

0

dτ

[
φ̇2(rτ)

U
+

1
i
2µ

U
φ̇(rτ)

]
(20)

stands for the kinetic and Berry term of the U(1) phase field in the charge sec-
tor. The SU(2) gauge transformation in Eq. (12) and the fermionic Berry term in
Eq. (4) generate SU(2) potentials given by

R†(rτ)∂τR(rτ) = R†
(

ϕ̇
∂

∂ϕ
+ ϑ̇

∂

∂ϑ
+ χ̇

∂

∂χ

)
R = −σ̂ ·A(rτ), (21)

where

Ax(rτ) =
i
2
ϑ̇(rτ) sin χ(rτ)− i

2
ϕ̇(rτ) sin θ(rτ) cos χ(rτ),

Ay(rτ) =
i
2
ϑ̇(rτ) cos χ(rτ) +

i
2
ϕ̇(rτ) sin θ(rτ) sin χ(rτ),

Az(rτ) =
i
2
ϕ̇(rτ) cos ϑ(rτ) +

i
2
χ̇(rτ), (22)

are the SU(2) gauge potentials.
4.2. Fermionic action

The fermionic sector, in turn, is governed by the effective Hamiltonian

HΩ,φ =
∑

r

%(rτ)[h̄↑(rτ)h↑(rτ)− h̄↓(rτ)h↓(rτ)]

−t
∑

〈r,r′〉

∑
α

γ
[U†(rτ)U(r′τ)

]
α

γh̄α(rτ)hγ(r′τ)− µ̄
∑
rα

h̄α(rτ)hα(rτ).(23)

The result of the gauge transformations is that we have managed to cast the
strongly correlated problem into a system of mutually non-interacting fermions,
submerged in the bath of strongly fluctuating U(1) and SU(2) fields whose dy-
namics is governed by the energy scale set by the Coulomb interaction U coupled
to fermions via hopping term and with the Zeeman-type contribution with the
massive field %(rτ).

In analogy to the charge U(1) field the SU(2) spin system exhibits emergent
dynamics. By integrating out fermions the last term in Eq. (19) will generate the
kinetic term for the SU(2) rotors

S0[Ω ] = −1
2
× 4

∑

rr′

∫ β

0

dτdτ ′
∑

ab

〈Aa(rτ)Ab(r′τ ′)〉
∑

r′
〈Sa

h(rτ)Sb
h(r′τ ′)〉

−2
∑

rr′

∫ β

0

dτ〈A(rτ) · Sh(r′τ ′)〉 (24)

with

〈Sa
h(rτ)Sb

h(r′τ ′)〉 = −1
4
× 2δab

1
Es

,

〈Sz
h(rτ)〉 = Tr

[
σ̂zĜ(rτ, rτ)

]
=

∆c

U
. (25)

For example, in the antifferomagnetic (AF) phase, at the half-filling, it assumes
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the staggered form %(rτ) = ∆c(−1)r with ∆c being the charge gap ∆c ∼ U/2 for
U/t À 1. At zero temperature

lim
T→0

1
Es

=
∆2

c

2E3
k

, (26)

so that, in the limit U/t À 1 one obtains Es ∼ 2∆c = U . However, a nonzero value
of ∆c does not imply the existence of AF long-range order. For the occurrence of
AF order: the angular degrees of freedom Ω(rτ) have also to be ordered, whose
low-lying excitations are in the form of spin waves. Therefore the kinetic term in
the spin sector becomes

S0[Ω ] = − 1
Es

∑
r

∫ β

0

dτ〈A(rτ) ·A(rτ)〉, (27)

so that the total kinetic energy S[Ω , φ] = S0[φ] + S0[Ω ] for U(1) and SU(2) ro-
tors is

S0[Ω , φ] =
∑

r

∫ β

0

dτ

{
φ̇2(rτ)

U
+

2µ

iU
φ̇(rτ) +

1
4Es [ϑ̇2(rτ) + ϕ̇2(rτ) + χ̇2(rτ)

+2ϕ̇(rτ)χ̇(rτ) cos ϑ(rτ)] +
∆c

iU
[ϕ̇(rτ) cos ϑ(rτ) + χ̇(rτ)]

}
. (28)

The distinctive feature of Eq. (28) is the presence of the geometric Berry contri-
butions that signify topological features of the underlying field theory.

5. Topological features

5.1. Statistical theta terms
In the preceding sections we have shown that a theory of strongly interact-

ing electrons can be transformed to an equivalent description of weakly interacting
fermions which are coupled to the “fluxes” of the strongly fluctuating U(2) gauge
field. With regard to the non-perturbative effects, we realized the presence of an
additional parameter, the topological angle θc/2π ≡ 2µ/U , which related to the
chemical potential in a geometric Berry phase term

Sc
B =

θc

2πi

∑
r

∫ β

0

dτ φ̇(rτ). (29)

Since topologically the U(2) group is equivalent to a circle, the configuration
space for the phase field consists of topological sectors, each characterized by
integer m which is the number of times the phase field φ(rτ) winds as one goes
around the circle boundary. The associated topological effects arise as stable, non-
perturbative, collective excitations of the phase field (dual to the charge), which
carry novel topological characteristics. These are the winding numbers of U(1)
group: m(r) ≡ 1

2π

∫ β

0
dτ φ̇(rτ) that become topological conserved quantities. Sim-

ilarly in the spin sector a Berry phase term arises

Ss
B =

θs

2πi

∑
r

∫ β

0

dτ [ϕ̇(rτ) cos ϑ(rτ) + χ̇(rτ)] (30)
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with the theta term θs/2π = ∆c/U that is related to the Mott gap. Here, the
integral of the first term in Eq. (30) has a simple geometrical interpretation as it
is equal to a solid angle swept by a unit vector Ω(ϑ, ϕ) during its motion.

5.2. Topological charge and the electron density

In addition to the Coulomb energy U and temperature, the chemical po-
tential µ plays a crucial role in the Mott transition, since it controls the electron
filling ne. An immediate implication of the composite nature of the electrons is
that the electron occupation number (i.e. the average number of electrons per site
in the Cu–O plane)

ne =
1
N

∑
rα

〈c̄α(rτ)cα(rτ)〉 (31)

consists of the fermion occupation coming from the fermionic part of the compos-
ite and a topological contribution resulting from the “flux-tube” attachment〈∑

α

c̄α(rτ)cα(rτ)

〉
=

〈∑
α

f̄α(rτ)fα(rτ)

〉
+

2
iU

〈
∂φ(rτ)

∂τ

〉
. (32)

The appearance of the topological contribution in Eq. (32) is not surprising given
the fact that “statistical angle” depends on the chemical potential and the occupa-
tion number is just its conjugate quantity. Owing to the U(1) topological charge
(the winding number) given by

m(r) =
1
2π

∫ β

0

dτ φ̇(rτ) =
1
2π

∫ φ0(r)+2πm(r)

φ0(r)

dφ(rτ), (33)

the mean value of the density of topological charge can be written after performing
Legendre transformation as

nb =
2µ

U
+

2
U

〈
1
i
∂φ(rτ)

∂τ

〉
. (34)

Therefore, the average electron occupation number ne is given by

ne = nf + nb − 2µ

U
. (35)

In the limit of strong (weak) correlations ne interpolates between topological nb

(fermionic nf) occupation numbers. Clearly, in the large-U limit µ → nfU/2, so
that ne → nb and the system behaves as governed entirely by density of topological
charge.

5.3. Criticality

It is straightforward now to calculate the charge compressibility κ. The
result is given in Fig. 1. We see the evolution of κ from the Mott insulator [8]
with κ = 0 (at 2µ/U = 1) to a point of degeneracy on the brink of the particle
occupation change at 2µ/U = 0.5, where κ = ∞ at T = 0. It is clear that the
nature of the divergence of κ here has nothing to do with singular fluctuations
due to spontaneous symmetry breaking as in the “conventional” phase transition.
Rather, this divergent response appears as a kind of topological protection built
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Fig. 1. Plot of the charge susceptibility χ̃c = Uχc/2, exhibiting the highly compressible

Mott state at the degeneracy points as opposed to the incompressible (χc = 0) one.

in the system against the small changes of µ. Further, κ → ∞ implies that
the ∂µ/∂ne becomes vanishingly small at T = 0, which results in the chemical
potential pinning.

6. Summary

For strongly correlated systems the route leading from the microscopic
Hamiltonian to the appropriate effective description is rather nontrivial. This
means that the system has a simple description only in terms of “particles” or
other objects, which are very different from the microscopic constituents. In this
paper we have observed that the important symmetries of the Hubbard model
given by the charge U(1) gauge and spin rotational SU(2) groups, which are rel-
evant for the occurrence of the superconducting and magnetic orderings, imply
that the quantum dynamics is governed nontrivially by the multiply connected
U(2) = U(1) ⊗ SU(2) group manifold. As a result, interacting electrons appear
as a composite objects consisting of bare fermions with attached gauge fields. We
have obtained the effective action with the Coulomb interaction that contain topo-
logical contributions to the effective action. These Berry terms are instrumental for
identifying the “quantum protectorates” — stable states of matter whose generic
low energy properties are insensitive to microscopics [9]. Therefore, a new type
of quantum numbers must be invoked to explain topologically induced quantum
critical point (QCP) in cuprates and the associated pinning of the chemical poten-
tial. Topological effects arise as stable, non-perturbative, collective excitations of
the phase field (dual to the charge), which carry novel topological characteristics.
These are the winding numbers of U(1) group that become topological conserved
quantities. It is exactly the appearance of these topological charges that render the
system “protected” against small changes of the Hamiltonian parameters. This
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novel conservation does not arise just out of a symmetry of the theory (as “con-
ventional” conservation laws based on Noether’s theorem) but it is a consequence
of the connectedness, i.e. topology of the phase space, related to the topological
properties of the associated symmetry group [10].
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