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1. Introductory comments

Among his many scientific achievements Józef SpaÃlek has contributed greatly
to our understanding of the experimental manifestations of electron correlation
effects in solids. This has been very useful in the proper characterization of a
several different metal–insulator transitions that were very puzzling at the time
they were being investigated in our laboratory. It therefore seemed appropriate
to selectively highlight in this article some of the key experiments, as well as their
theoretical interpretation by SpaÃlek and collaborators.

One of the hallmarks of SpaÃlek’s work is the basic simplicity of the fundamen-
tal concepts, although the mathematical elaboration of the fine details inevitably
becomes rather cumbersome. In the present, rather personalized, article we em-
phasize the elementary steps needed for a rationalization of selected data. The
reader is urged to consult the references cited below as well as several review arti-
cles [1] for a much more balanced and complete exposition of the subject matter.

2. Experimental data

We begin with a brief review of experimental resistivity measurements on
systems that manifest a variety of metal–insulator transitions: V2O3, Cr- and
Ti-doped V2O3, nonstoichiometric V2O3, and the NiS2−NiSe2 system. Work on
the vanadium sesquioxide system was initiated by Foëx [2] who was the first to
report a discontinuous change in electrical properties in V2O3. A highly cited set
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Fig. 1. Electrical resistivity measurements on (V1−xCrx)2O3 single crystals plotted log-

arithmically against reciprocal temperature. Let us note the various types of transitions

discussed in the text.

of papers by the Bell group [3] drew attention to many different manifestations
of electron correlation effects in the (V1−xCrx)2O3 system. Figure 1 displays a
much more extensive set of electrical resistivity data by the Purdue group [4] for
(V1−xCrx)2O3 with 0 ≤ x ≤ 0.1. Particularly striking are the many different types
of observed electrical transitions. Broadly speaking, all members in this group are
antiferromagnetic insulators (AFI) at low temperatures. With rising temperature
T , materials in the composition range 0 ≤ x ≤ 0.005 experience a transformation
to a paramagnetic metallic (PM) phase. This transition can be suppressed by
doping V2O3 with small amounts of Ti, or by rendering the material slightly non-
stoichiometric [5], so that these compositions remain relatively good conductors at
all temperatures. In the composition region 0.0177 ≤ x ≤ 0.051 while increasing
the temperature beyond the stability range of the AFI regime, one encounters a
transition first from the PM state to a paramagnetic insulator (PI), and then back
to a second metallic phase (PM′). This regime of reentrant metallic behavior,
which had escaped earlier notice, is rare in oxides and is therefore of special inter-
est. Lastly, for x > 0.018 only the AFI–PI transformation is encountered. These
observations immediately raise the question whether a single mechanism can be
devised for explaining all the different types of transformations and further, how
thermal inputs of order kBT ≈ 10 meV can generate changes in electronic structure
that typically amount to 2 eV. These matters are addressed below.The electrical
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Fig. 2. Electrical resistivity measurements on NiS2−xSex single crystals plotted loga-

rithmically against temperature. Let us note the changes in properties, discussed in the

text, as S is replaced by Se.

properties of the NiS2−xSex system raise related questions. Work in this area was
initiated by the duPont group [6] and extended at Purdue University and at the
University of Kentucky [7]. Resistivity measurements are displayed in Fig. 2 in the
range 0 ≤ x ≤ 0.71. One should note the plateau in the region 30–120 K at compo-
sitions 0 ≤ x ≤ 0.24 that separates the low temperature AFI phase (the magnetic
moments are actually canted, rendering these compounds slightly ferromagnetic)
from the PI phase. This has recently been traced [8] to the existence of a metallic
surface layer and is not associated with bulk properties. However, in the range
0.38 ≤ x ≤ 0.52, the compounds are metallic at low T , followed by an opening of a
gap in the density of states near 50–70 K as manifested by a metal–insulator tran-
sition that renders the material semiconducting at higher T . This is the reverse
of normal metal–insulator transitions and is therefore counterintuitive. Lastly, for
increasing x > 0.55 the transition to the PI state gradually fades; the material
then remains a conductor at all T . One should also be aware that in this system
the so-called metallic phase has a resistivity as high as 140 Ω cm, which is a full
ten orders of magnitude larger than that of highly pure Cu metal at comparable
temperatures. These various observations again require explanation.
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The interpretation of these phenomena is based on a model, originally ad-
vanced by Gutzwiller [9] and by Brinkman and Rice [10], in which the insulating
state of these systems arises from a balance between itinerant Bloch-type band
states and electron localization effects induced by mutual Coulomb repulsions be-
tween interacting electrons. A reformulation by SpaÃlek and co-workers [11] per-
mitted an extension of these concepts to nonzero temperatures. This renders
plausible the view that in poor conductors a metal–insulator transition is linked
to a changeover from band itineracy to a localized regime; the manner in which
this is realized is the principal subject of the present article.

The question first arises as to why the V2O3 and NiS2 systems are represen-
tative candidates for exhibiting electron correlation effects. In V2O3 the cation,
element 23 in the fourth row of the periodic table, is just at the edge of significant
overlap between cationic and anionic orbitals: Ti2O3 immediately to the left is
a reasonably good conductor, whereas Cr2O3 immediately to the right is an ex-
cellent insulator. Accordingly, doping of V2O3 with Ti or Cr renders the parent
compound more conducting or more insulating, thereby permitting an adjustment
of the relative importance of itinerant vs. localized properties. NiS2 is a semi-
conductor; by admixture of Se, which lies immediately below S in the periodic
table, with a correspondingly larger radial extension of its orbitals, one improves
the cation–anion orbital overlap to the point where a changeover to a conducting
state becomes possible.

We next turn to a more quantitative assessment of these ideas.

3. Thermodynamic considerations
Hereafter we will no longer consider the low-T transitions in Fig. 1 that

pertain to the AFI phase, for these transformations involve both a change in crys-
tal structure and magnetic ordering phenomena that are beyond the purview of
the present paper. We thus begin our study of the remaining metal–insulator
transitions with a very simplistic but effective thermodynamic argument. Let us
consider a localized electron system with one potentially mobile electron per atom
in a regular lattice of N sites, whose zero of energy E is the energy of each electron
at its regular lattice site at T = 0. The electron may be placed into position in
either a “spin up” or a “spin down” configuration. The corresponding entropy for
each electron is thus Sl/N = kBln2 and the Helmholtz energy per electron is then

Fl/N = El/N − TSl/N = −kBT ln 2. (1)
This function changes linearly with temperature. This situation should be con-
trasted with the itinerant electron picture. We start with the Sommerfeld model
of an electron gas whose low-T heat capacity per electron per site is given by
Ci/N = γT ; we show later how the linear coefficient γ for an interacting electron
gas is related to γ0 for a noninteracting gas. The energy of the itinerant electron
gas is then given by Ei/N =

∫
(Ci/N)dT = E0/N + 1

2γT 2, where E0 is a constant
to be specified later. The corresponding entropy is Si/N =

∫
γdT = γT , whence

the Helmholtz free energy for the itinerant state is
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Fi/N = Ei/N − TSi/N = E0/N − 1
2
γT 2. (2)

This quantity varies parabolically with temperature. In Fig. 3 we compare the
two free energies: the localized case is represented by the straight line that passes
through the origin of coordinates, whereas the various parabolas intersect the or-
dinate at values E0. If E0 has a large negative value (curve 1), the parabola always
lies well below the straight line; thus, the itinerant state always has the lower free
energy and therefore is the stable phase. However, for energies in a fairly wide
range of negative E0 values, curves 3a and 3b, the parabola intersects the straight
line at two places: the itinerant regime still has the lower free energy for tem-
peratures below L or J . But in the intermediate range LM or JK the localized
configuration has the lower free energy. Finally, for temperatures beyond M or K

the metallic state once again has the lower free energy. This represents the case of
reentrant metallic behavior, seen in the (V1−xCrx)2O3 system as described above.

Fig. 3. Sketch of the free energy as a function of temperature for localized electrons

(straight line) and for itinerant electrons (parabolas, intersecting the ordinate at various

values of E0). The intersection points at various temperatures indicate conditions where

phase transitions occur. Let us note in particular the double intersections between the

straight line and some of the parabolae.

Actually, the high temperature PI–PM′ transformation is not sharp, as antic-
ipated, but stretches out over a significant interval, presumably because at higher
T the lattice can adjust to a change in electron configuration — a feature that
has been left out of account. Let us note that since the slopes of the straight lines
and the parabolas change discontinuously at the intersection points the entropy
of the PM and PI phases differ, so that the transitions are of first order. Further,
there exists a value of E0 (not shown) where the parabolas and straight lines are
tangent to each other at a temperature Tc; thus, at that critical point one deals
with a higher order phase transformation.

As E0 becomes yet less negative, the parabola (curve 4) intersects the straight
line at a low temperature P : this is a somewhat unusual case in which the low
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temperature phase is metallic and the high temperature phase is insulating. Such
a situation was encountered in the NiS2−xSex system in the composition range
0.35 < x < 0.58. Actually, a second intersection point must be present, but it
occurs at a high temperature where the material is no longer stable. Lastly, for
small positive values of E0 the parabola (curve 2) intersects the straight line at a
temperature R. This represents the more usual case for which the insulating state
is stable at low T and a first-order transition to the metallic state then takes place
at higher temperatures.

This very rudimentary description catches the essence of a metal–insulator
transformation driven by electron correlation effects; we provide a better rationale
below. We next determine the value of E0. At this very elementary level we argue
as follows. An electron gas distributed in a partially filled energy band has an
average kinetic energy Ei/N = −|ε|. To take electron correlations into account
we adopt the Hubbard model. We posit that electron interactions may be ignored
except when two electrons reside on the same atom with reversed spins, in which
case their interaction energy is represented by the Hubbard parameter U . Let the
probability of a double site occupancy be η; then the average Coulomb repulsion
energy per electron is given by Uη > 0. One must also mimic the hindered motion
of the interacting electrons as they move past each other. This is attended to by
introducing a correction factor 0 < Φ(η) < 1, whose precise form is specified later.
We thus write

E0/N = −Φ(η)|ε|+ Uη. (3)
This formulation is highly suggestive. It shows that there can exist conditions
under which the negative electronic kinetic energy is almost compensated for by
the positive repulsion energy, thereby rendering E0/N very small. Then the free
energy is determined largely by the entropic contributions, yet to be determined,
that are very sensitive to temperature changes. It is in this regime of near balance
that electronically driven metal–insulator transformations are encountered. This
discussion thus rationalizes at an elementary level how thermal input energies can
initiate large electronic energy shifts.

4. Determination of scaling function

For a more sophisticated introduction to electron correlation effects for a half-
filled energy band we follow the lead of SpaÃlek et al. [11, 12] who replaced the set of
interacting electrons by a collection of independent quasiparticles with momenta
h̄k (h̄ being the Dirac constant and k — the wave vector) and energies Ek. The
cardinal step here is the positing of the relation Ek = Φ(η)εk as a scaling function
that relates the energies of the quasiparticles to those of the bare electrons, εk.
This approach is justified a posteriori by its success. The individual band energy
of each of the N quasiparticles is then given by

EB/N =
∫ ∞

−∞
Ef(E)ρ(E)dE, (4)
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where f(E) ≡ f [(E − EF)/kBT ] is the Fermi–Dirac energy distribution which,
by definition, holds for the independent particle assembly; here EF is the Fermi
energy and ρ(E) is the appropriate density-of-states (DOS) function. We now
introduce the scaling law into the above to obtain

f(E) ≡ f [(E −EF)/kBT ] = f [(εk − µ)/kBT ∗] ≡ f∗(εk), (5)
in which µ ≡ EF/Φ is the Fermi energy of the bare particles and T ∗ ≡ T/Φ is
an effective temperature that governs the energy distribution of the bare electrons
associated with the quasiparticles.

Based on the mathematical relation governing the Dirac delta distribution,
δ(ax) = |a|−1δ(x), the DOS function for electrons of spin σ may now be rewritten
as a sum of Dirac delta distributions as follows:

Nρσ(E) =
∑

k

δ[Φ(ε− εk)] = Φ−1
∑

k

δ(ε− εk) = Φ−1(η)ρσ
0 (ε)N. (6)

Thus, the DOS for the correlated electrons, ρσ, is increased by the yet-to-be es-
tablished factor Φ−1 > 1 relative to the DOS of the bare electrons, ρσ

0 . As a
result, the band width is narrowed and the effective mass of the charge carriers is
increased relative to those of the bare electrons. Now introduce (6) and (5) in (4)
to obtain

EB/N = Φ(η)
∫ ∞

−∞
εf∗(ε)ρσ

0 (ε)dε ≡ Φ(η)ε(T ∗), (7)

where ε is the average kinetic energy per bare electron at an effective tempera-
ture T ∗. We thereby recover the first term in Eq. (3). Since the scaling function
Φ(η) depends on the average double occupancy of any site, η, we can simply adjoin
to Eq. (7) the local electron site interaction energy U for double occupation, mul-
tiplied by the probability η of its occurrence. When added to Eq. (7) one recovers
Eq. (3).

5. Specification of scaling function Φ at T = 0

In what follows we adopt for simplicity the rectangular density-of-states func-
tion (RDOS) in the form ρσ

0 = 1/W for −W/2 ≤ ε ≤ W/2 and ρσ
0 = 0 outside

this range; W is the bandwidth of the bare band; this form of the RDOS applies
to occupation by an electron with a given spin. We let n represent the particle
number operator for occupation of a representative site by an electron.

To determine Φ we note that the maximum value for double occupancy is
η = 1

4 for a half-filled nondegenerate band. It is therefore apposite to introduce a
Taylor series expansion in the form Φ(η) = f0 + f1η + f2η

2 + . . . The coefficients
fi and the optimal value of η may be found by imposing constraints: (i) Minimize
EG/N with respect to η to determine the optimal value η0. (ii) Set U = 0;
the sites are then occupied randomly, whence the average kinetic energy is given
by ε = −W (n/2)(1 − n/2), where the last factor involves the probability that a
bare electron with a given spin can move to an adjacent site that is not already
occupied by another bare electron of the same spin. Moreover, for U = 0, (iii)
Φ = 1 and η0 = n2/4. (iv) When η = 0, double site occupancy is prohibited;
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the average bare electron kinetic energy is now ε = −W (n/2)(1 − n), where the
second factor involves the probability that an adjacent empty site is available for
occupancy. Elementary algebraic manipulations then lead to the results f0 =
(1 − n)/(1 − n/2), f1 = 4/[n(1 − n/2)], f2 = −8/[n3(1 − n/2)]. These quantities
may then be substituted in Eq. (3) to find the dependence of double occupancy,
the correlation function, and the band energy in their dependence on U and W

for various n.
Considerable simplification is achieved by treating the case of a half-filled

band, n = 1, which, in the RDOS approximation leads to the results

η0 = (1/4)(1− U/2W ), (8a)

Φ(η0) = 8η0(1− 2η0) = 1− (U/2W )2, (8b)

E0/N = −(W/4)(1− U/2W )2. (8c)
We see that due to correlations the average band energy −W/4 for bare electrons
is now reduced by the factor (1 − U/2W )2; the band narrowing factor Φ(η0) ≤ 1
is specified by (8b). Clearly, for U > 2W the above quantities assume unphysical
values; thus, a Mott–Hubbard type of localization must set in at the critical value
U = 2W for a rectangular density of states.

Fig. 4. Plots of reduced band energies EG/NW vs. U/W for a RDOS at different values

of n. The left and right end points represent respectively reduced energies prevailing in

the absence of electron interaction and in strong interactions such that U/2W = 1. Let

us note the reduction in energy spread as n diminishes. R. Hoehn, unpublished work.

To gain a better feel for the effects of deviating from the half-filled band
scenario we exhibit in Fig. 4 a new plot showing how the reduced band energies
at 0 K change with U/W for various n values. The calculations are based on the
generalized, much more complicated form of Eqs. (8) when n 6= 1. The results
clearly indicate the diminishing spread of the energy scale as n diminishes, as well
as the concomitant variations of EG/NW with U/W as n is altered.

6. Extension to nonzero temperatures

The case of nonzero temperatures for interacting electrons was first consid-
ered by SpaÃlek and co-workers [11, 12]. When T > 0 the entropy contribution
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must be added to the energy of the quasielectron assembly. We now differentiate
between the two distinct spin alignments σ = ±1/2. This free energy per site is
then specified by

Fi/N = (1/N)
∑

kσ

Ekσf(Ekσ) + Uη + (kBT/N)
∑

kσ

{f(Ekσ) ln f(Ekσ)

+ [1− f(Ekσ)] ln (1− f(Ekσ))}. (9)
On now substituting Eq. (5) and T = T ∗Φ in Eq. (9) one obtains the simple
scaled relation

Fi(T )/N = Φ(η)F0(T ∗)/N + Uη, (10)
where F0(T ∗) is the free energy of the bare electron assembly at the effective tem-
perature T ∗, namely

F0(T ∗) =
∑

kσ

εkσf∗(εkσ) + kBT ∗
∑

kσ

{f∗(εkσ) ln f∗(εkσ)

+ [1− f∗(εkσ)] ln (1− f∗(εkσ))}. (11)
This shows the one-to-one correspondence between the bare and interacting elec-
trons at all temperatures, thereby also providing an a posteriori justification for
introducing the concept of quasiparticles. Moreover, we can immediately apply
the Sommerfeld model to determine the low-temperature heat capacity per site of
the independent quasiparticles in the form

Ci/N = γ(EF)T, γ ≡ 2π2k2
Bρσ(EF)/3 = 2π2k2

Bρσ
0 (εF)/3Φ ≡ γ0/Φ, (12)

where we used (6) to replace the DOS per spin for the quasiparticles, ρσ, with that
for the bare particles, ρσ

0 . For a RDOS ρσ
0 = 1/W . We can then determine the low-

-temperature energy of the quasiparticle assembly via
∫

(Ci/N)dT = E0/N+ 1
2γT 2,

where E0 is specified by Eq. (7). Introducing Eq. (12) we find

Ei(T )/N = −Φ|ε|+ Uη + γ0T
2/2Φ. (13)

The entropy is specified by
∫

(Ci/TN)dT , so that

Si(T )/N = γ0T/Φ. (14)
Finally, the Helmholtz free energy functional is given by

Fi/N = −Φ(η)|ε|+ Uη − γ0T
2/2Φ, (15a)

which is not the same as the Helmholtz free energy since the extrathermodynamic
variable η has not yet been optimized. This, in fact, is the next step: as shown
by SpaÃlek et al. [11], on imposing the constraint (∂Fi/∂η) = 0 and for n = 1 one
obtains the low-T limiting expressions for η0 and for Φ0 identical with Eqs. (8a)
and (8b). The optimized Helmholtz free energy expression thus has the RDOS
form (n = 1)

Fi0

NW
= −1

4

[
1−

(
U

2W

)2
]

+
U

4W

(
1− U

2W

)
− 1

2
γ0T

2

W [1− (u/2W )2]
, (15b)
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that involves solely the parameter ratios U/W and γ0/W , as well as the T 2 depen-
dence. The above is of the form specified by Eq. (2) and thus furnishes the rationale
for the associated qualitative discussion. The above expressions have been gener-
alized by SpaÃlek and co-workers [11, 12] who developed a two-fluid model for the
interacting electron assembly. They further took into account the very interesting
effects developed in an external magnetic field and considered the expansion of the
various thermodynamic quantities in higher powers of the temperature.

For the localized phase we write, as before,

Fl/NW = −(kBT/W ) ln 2. (16)
We can now determine the intersection points sketched in Fig. 3. Transitions
between the itinerant and localized states occur whenever the corresponding free
energies match. On equating Eqs. (15b) and (16) one obtains a quadratic equation
in kBT/W with the two roots(

kBT

W

)

±
=

3
2π2

[
1−

(
U

2W

)2
] {

(ln 2)±
[
(ln 2)2 − π2

3

(
1− U/2W

1 + U/2W

)]1/2
}

. (17)

Fig. 5. Coexistence curve for delineating the phase boundaries of the PM, PI, PM′

regions in the phase diagram of the reduced temperature vs the reduced Hubbard pa-

rameter. The retrograde curve was truncated as indicated in the text.

A plot of kBT/W vs. U/W is shown in Fig. 5. The retrograde curve represents the
phase boundary separating the insulating, localized regime (PI) from the itiner-
ant, metallic regimes, PM and PM′. In examining the results one should remember
the inherent restrictions: the curve is obtained in the low-temperature limit for a
half-filled, nondegenerate band, using an RDOS for which ρσ

0 = 1/W . The phase
boundary has been artificially terminated both at T = 0 and at a point where the
low-T approximation breaks down. Several matters are of interest: (i) There exists
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a critical limit (U/W )l at the coalescence point (kBT/W )+ = (kBT/W )− ≈ 0.045,
corresponding to U/W ≈ 1.49; below this reduced correlation energy the metallic
configuration is stable at all temperatures. This conforms to the qualitative under-
standing that on-site interaction energies must exceed a temperature-dependent
critical value for electron correlation effects to force a phase transition. (ii) At
T = 0 the itinerant metallic state is stable up to the critical value (U/W )0 = 2.
Beyond that point the electrons are completely localized, so long as n = 1. (iii) An-
other critical point is reached close to the cutoff at kBT/W ≈ 0.045, U/W ≈ 1.55.
At higher reduced temperatures and for any value of U/W the PM′ and PI phases
become indistinguishable in a manner reminiscent of the conventional liquid water–
water vapor critical point. (iv) On raising the reduced temperature of a material
with fixed U/W in the limited range 1.49 < U/W < 1.56 one encounters the se-
quential phase change PM–PI–PM′ characteristic of reentrant metallic behavior.
This approach therefore captures the essentials of the transitions encountered in
the (V1−xCrx)2O3 system over the limited range 0.005 < x < 0.018. (v) In the
range 1.56 < U/W < 2 only the PM–PI transformation is encountered with rising
reduced temperature, as is experimentally found to be the case for x > 0.018.
Finally, for U/W close to the critical value of 2 the metallic phase is stable only
over a very low set of reduced temperatures and results in the PM–PI transition
with rising temperature; this case is exemplified by the NiS2−xSex system for
0.35 < x < 0.55.

This very simplistic presentation does mimic the transitions observed in the
magnetically disordered phases of the V2O3–Cr2O3 and NiS2−NiSe2 systems, eval-
uates the range of permissible parameters, and thereby provides a reasonably
quantitative interpretation for the experimental observations.

7. Heat capacity measurements
Aside from the above considerations one would like more direct experimen-

tal confirmation of the presence of electron correlation effects. Several of these
are reviewed in a recent publication [13]. Here we concentrate on heat capac-
ity measurements: as shown in Eq. (12), relative to the Sommerfeld value for
bare electrons at low temperatures, the heat capacity is increased by the factor
1/Φ = [1 − (U/2W )2]−1 in the RDOS approximation. In Fig. 6, bottom curve,
there is shown a set of experimental heat capacity measurements [14] on nonstoi-
chiometric V2O3 under pressures sufficient to render the material barely metallic.
Let us note that the indicated γ values exceed by a factor of twenty to fifty the
electronic contributions to the heat capacities of normal metals. Further, as the
pressure is relaxed the lattice expands, the conduction band narrows, and the elec-
tron correlations increase. Correspondingly, one observes a rise in γ as the system
approaches the metal–insulator boundary. Vacancies in the cation sublattice of
V2−yO3 mask the anticipated indefinite rise of γ as the metal–insulator boundary
is reached. This is verified by the top curve in Fig. 5, where γ is shown to depend
on the extent of departure from ideal stoichiometry.
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Fig. 6. Electronic contribution γ to the low-temperature heat capacity of V2−yO3 under

pressure (lower curve, y = 0.013) and as a function of y (upper curve). Let us note the

increase in γ as the metal–insulator boundary is approached by release of pressure on

the crystal.

Complementary investigations were earlier carried out on metallic
(V1−xTix)2O3 by the Bell group [3] with very similar results. They reported
γ values of 40–80 mJ/(mol K2) for barely metallic (V1−xTix)2O3 for x value in
the range 0.05 to 0.08. Comparable studies on NiS2−xSex [15] led to γ values in
the range of 40–50 mJ/(mol K2) for barely metallic samples with 0.51 < x < 0.58.
All of the above results indicate that the Sommerfeld heat capacity constants for
correlated metals fall in the same range of values which is much larger than for or-
dinary metals, as expected for materials displaying significant electron correlation
effects.

8. Critical phenomena of correlated electron systems

The systems considered above lend themselves to a study of electronic behav-
ior at a critical point. As mentioned earlier, one anticipates conditions where the

Fig. 7. The electrical conductivity σ of a (V0.989Cr0.011)2O3 single crystal as a function

of decreasing or increasing pressure at temperatures close to the critical temperature.

Let us note the discontinuity in σ at the transition for T < Tc which gives way to a

continuous change in σ for T > Tc.
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Fig. 8. (A) Electrical conductivity measurements as a function of reduced pressure at

the critical temperature of 457 K. Inset shows the double logarithmic plot that provides

the critical exponents δ = 3 or 5 under conditions relatively far removed from or close

to the critical value of Pc. (B) Plot of σ − σc as a function of (T c − T ). Inset shows a

double logarithmic plot that yields a critical exponent β = 0.5 or 0.34 under conditions

relatively far removed from or close to the critical value of Tc. (C) Pressure derivative of

the electrical conductivity σ as a function of the reduced temperature close to the critical

point. Inset shows double logarithmic plot that yields a critical exponent γ = γ′ = 1

both above and below the critical temperature.

distinction between the PM and PI phases in the (V1−xCrx)2O3 system ceases to
exist. The appropriate temperature and composition where this occurs were first
experimentally identified by Kuwamoto and co-workers [4]. A detailed investiga-
tion of the critical phenomena, shown in Fig. 7, was undertaken by Limelette et al.
[16] who reported the electrical conductivity σ of (V1−xCrx)2O3 with x = 0.011 as
a function of temperature T and pressure P close to the critical point. At moder-
ately high pressures of several kbar the material is metallic; on release of pressure
the insulating state is reached. The transition occurs discontinuously below the
critical temperature of Tc = 457 K and continuously above Tc. The critical point
is marked by a continuous curve with an infinite slope. Details of these investiga-
tions are exhibited in Fig. 8. The top part shows the variation of σ with pressure
at 457 K. The double logarithmic inset indicates that σ − σc ∼ (P − Pc)1/δ with
δ = 3 relatively far from the critical point, and δ = 5 very close to the critical
point. These numbers agree respectively with δ = 3 for the mean field theoretical
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description of the critical exponents of fluids, and with the exponent δ = 4.814
derived on the basis of renormalization group techniques.

The central part shows the temperature dependence of the conductivity un-
der pressure: the double logarithmic plot indicates that σ − σc ∼ (T − Tc)β with
β = 0.5 in a range relatively far removed from criticality. This accords with the
mean field value anticipated for fluids. Closer to the critical point they obtained
β = 0.34, as compared to the theoretical value of β = 0.327 derived by group
renormalization techniques.

The third part shows the pressure derivatives of the electrical conductivity as
a function of T/Tc both above and below the critical temperature. These workers
found that (∂σ/∂P ) ∼ (1/2)(T −Tc)γ for T < Tc and (∂σ/∂P ) ∼ 1/(T −Tc)γ′ for
T > Tc with γ = γ′ = 1. These are analogues of the isothermal compressibility,
with the same values as in the mean field approximation. Any deviations closer
to the critical points could not be established due to the scatter of the data.

The above information clearly shows that this interacting electron assem-
bly generates critical point phenomena completely analogous to those of ordinary
fluids. Limelette and co-workers interpret this to mean that near criticality the
insulating phase is constituted by V3+ ions with a wide separation between coex-
isting V4+ and V2+ ions, to form the analogue of the gaseous state. By contrast,
the metallic state, with a sizeable density of V4+ (hole configuration) and V2+

(electron configuration) is comparable to a liquid.
The NiS2−xSex system with x = 0.44 has been used by the Chicago group [17]

to investigate quantum critical phenomena close to absolute zero. Such transitions
are driven not by thermal effects but by quantum mechanical fluctuations. The
energy scales entering the problem now also involve time scales that are set by
Planck’s constant and the characteristic energy of the system. The choice of
the above compound is dictated by its proximity close to the metal–insulator
boundary: it is barely metallic under moderate pressures but becomes an insulator
under ambient conditions.

To interpret the results we resort to a conventional analysis [18] of quantum
critical effects. Let K be a control variable of interest and let δ ≡ K − Kc,
where Kc is its value at the critical point. Typical of all critical phenomena, it is
assumed that when δ > 0 the correlation length ξ, over which the various physical
characteristics of the system vary reasonably uniformly, diverges as ξ(K) ∼ |δ|−ν .
There exists a corresponding divergence in the time scale: it takes longer times to
establish physical uniformity over greater distances. One thus sets up a divergent
time scale ξτ (K) ∼ ξz. At T = 0 and near criticality any quantum mechanical
operator O that depends on wave number k, angular frequency ω, and on K is
assumed to follow the diverging relation

O(k, ω, K) = ξdO(kξ, ωξτ ) = |δ|−dνO(kξ, ωξτ ), (18)
where the operator on the right is independent of K and thus, of no immediate
interest.
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The situation for T > 0 is more complicated. It is based on the classical
partition function Z(β) = tr exp(βtĤ), where tr is the trace over all accessible
states of the system, βt ≡ 1/kBT and Ĥ is the quantum mechanical operator
of interest. That formulation is to be compared with the quantum mechanical
expression exp (iĤτ/h̄) for the time evolution of the operator Ĥ. This invites the
comparison relation τ = −ih̄ that is commonly cited. For T = 0 the time scales
are infinite, but for T > 0 one encounters an upper limit Lτ = −ih̄/kBT on τ .
Thus, for T > 0 Eq. (18) must then be modified to read

O(k, ω, K, T ) = Ld/z
τ O(kLd/z

τ , ωLτ , Lτ/ξτ ), (19)
where the factor on the right does not contain K and again is not of immediate
interest.

The above two relations form the basis for interpreting the experiments.
Figure 9 shows the electrical conductivity σ at 50 mK as a function of pressure
P close to the critical pressure Pc. These measurements were interpreted on the
basis of Eq. (18); σ (as contrasted with the resistivity) falls smoothly with P −Pc

according to a power law whose exponent is µ ≡ dν = 1.1. In Fig. 10 there is shown
the change in σ with temperature at pressures barely exceeding the critical value
Pc. One sees that the anticipated power law is accurately obeyed with σ ∼ T 0.22,
whence d/z = 0.22.

Fig. 9. Electrical conductivity σ at 50 mK of a single crystal of NiS1.56Se0.44 as a

function of pressure above the critical pressure Pc = 1.51 kbar.

Fig. 10. Electrical conductivity σ as a function of temperature of a single crystal of

NiS1.56Se0.44 at pressures barely exceeding the critical pressure Pc. Let us note the

power law dependence σ ∼ T 0.22.

A critical test for the applicability of this analysis is the requirement that
with p ≡ (P − Pc)/Pc materials close to criticality should obey the relation
σ(p, T ) = pνdf [(T/pνz)d/z, 1] where f is a universal function of the indicated
variables. This reflects the fact that near criticality all length scales greatly ex-
ceed those of atomic distances. It follows from the above that
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σ/pµ ∼ T d/z/pdν = (T/pzν)d/z, (20)
when plotted as ln (σ/pµ) vs. ln (T/pzν), should produce a single curve onto which
all data points collapse. The extent to which this is the case is shown in Fig. 11,
thus conforming to a stringent test for the applicability of the above concepts.

Fig. 11. Reduced data plots showing the collapse of the various electrical conductivity

measurements onto a single curve, as a test of the applicability of the various scaling

laws cited in the text.

Fig. 12. Nonohmic electrical conductivity measurements on NiS1.56Se0.44 at 350–

800 mK at a pressure P = 1.56 kbar as a function of the applied electric field E .

Let us note the merging of the data points at high electric fields. The slope of the linear

part of the curve is a measure of the critical exponent z.

The three exponents introduced earlier may be determined individually by
an additional set of nonlinear electrical conductivity measurements in high applied
electric fields E . Here the relevant length scale is the mean free path lE near the
critical point, with a corresponding time scale ξτ ∼ ξz ∼ lzE . The energy gain by
an electron in the accelerating field is E = eE lE while the energy fluctuations due
to the uncertainty principle read h̄/ξτ ∼ l−z

E . On equating these two relations
we obtain lE ∼ E−1/(z+1). The authors defined a corresponding temperature by
kBTeff = eE lE , where the conversion from σ to Teff also involved the electrical
measurements in the ohmic region. In the nonohmic range the conductivity is
governed by the magnitude of E . For sufficiently high values all measurements
should merge onto a single curve with Teff ∼ Ez/(z+1). This expectation is met, as
is evident from inspection of Fig. 12 for a set of temperatures in the range 0.35 to
0.80 K. The slope of the merged curves leads to a value z = 2.7.

As a result of these experiments one encounters the following values for the
critical exponents:

ν = 1.7, the correlation length in the relation ξ(K) ∼ |δ|−ν ,
z = 2.7, the dynamical scaling exponent in the relation ξt(K) ∼ ξz,
d = 0.59, the scaling exponent in the relation O(k, ω, K) = ξdO(kξ, ωξt).



Manifestation of Electron Correlations . . . 453

The experiments have shown that under the specified conditions the electron as-
sembly in NiS1.56Se0.44 does undergo a quantum phase transition at extremely
low temperatures. However, the above values that characterize the transition dif-
fer from those normally associated with quantum critical phenomena. Usually the
dimension d is found to be close to an integer; the above remaining exponents also
fall outside normally accepted range. This might be an indication that close to
0 K the electron assembly constitutes a new universality class, though this specula-
tion requires confirmation. In any case, the experiments illustrate the interesting
quantum mechanical phenomena that are observable in systems where electron
correlations predominate.

9. Concluding remarks
In surveying the above information it is clear that the V2O3 and NiS2 sys-

tems are poised at the borderline between itinerant and localized electron configu-
rations. This renders possible a study of events where these systems are forced to
undergo transformations from one state to the other. The underlying theoretical
interpretation requires the use of models that go beyond the elementary electron
gas approximations. The basic ideas outlined above are very simple and lead to
a semiquantitative understanding of the observations. However, a full exploration
of all consequences [19] becomes rather complicated, and has therefore not been
taken up here. Lastly, under appropriate conditions the electron assemblies in
these systems can be made to exhibit critical phenomena, both of the classical
type for fluids and of effects driven by quantum fluctuations.
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