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In the lecture the theory of spin polarons is reviewed on the basis of

its analogy with the theory of lattice polarons. The energy dispersion curve

for a single polaron in a two-dimensional antiferromagnetic square lattice is

calculated in the self-consistent Born approximation. Also in self-consistent

Born approximation the energy of a pair of interacting spin polarons is cal-

culated. The results of calculations for realistic values of parameters of the

model lead to the conclusion that pairing of spin polarons is not a likely

mechanism of superconductivity in cuprates.
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1. Introduction

The problem of spin polarons had arisen as one of many ideas which, hope-
fully, could lead to an understanding of the phenomena of high temperature su-
perconductivity. The mathematical foundation of the spin polarons concept is
the so-called t−J model [1], proposed years ago in a quite different context. In
line with the general topics of the school — superconductivity in the past and at
present — the actively pursued in the past decade problem of spin polarons will
be recalled.

Spin polarons were studied starting from a simple heuristic model ap-
proach [2], refined over years (see e.g. [3]) and also by extended computer simula-
tions [4].

There is no place here to review the quite extensive literature on the subject.
In the present lecture we intend to concentrate on a particular approach which
exposes approximations underlying the widely accepted results of the theory. The
treatment here makes use of the well-elaborated procedures used years ago in the
theory of phonon polarons.
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The stoichiometric parent compounds of the superconducting cuprates are
antiferromagnets. It seems well established that a key role to their properties
are played by the CuO2 planes, or sequences of pairs in the same compounds,
which are relatively weakly coupled to their environment. The simplest model to
simulate the CuO2 planes is to consider them as a system of virtually localized
electrons on Cu2+ ions with their spins interacting like in the Heisenberg spin 1/2
antiferromagnets by an exchange interaction JSjSj . In doped or oxygen deficient
non-stoichiometric superconducting compounds the CuO2 planes can be modelled
as antiferromagnetic (AF) systems of spins 1/2 (virtually localized electrons) and
a number of holes–lattice sites void of a spin (electron). A hole can hop to a
neighbouring site at an energy cost, equal roughly to 2J in the first approximation,
if only the Ising components of spins are considered. The energy cost of hopping a
hole to a site distant by, say, n lattice constants would be of the order of 2nJ due to
a string of spins in “wrong” positions. In the Ising approximation the hole would be
localized due to the high energy costs of hopping. However, due to the transverse
components of spins in the exchange interactions there exist fluctuations of spins
which highly reduce the prohibitive energy costs of a movement of a hole. These
spin fluctuations in otherwise AF planes are described in terms of AF magnons.
A motion of a hole is thus accompanied by a cloud of magnons, similarly as a
motion of an electron in deformable lattice is accompanied by a cloud of phonons.
Thus there is analogy to the well-known (lattice) polaron — a bound state of
an electron with a cloud of phonons. The notion of spin polaron is introduced,
meaning a bound state of charge carrier dressed in a cloud of virtual magnons.

The above intuitive picture will guide us in describing a formal theory. The
starting point is the so-called t−J model defined by the Hamiltonian [1]:

Ht−J = −
∑

〈i,j〉,σ
t(1− ni,−σ)c+

iσcjσ(1− nj,−σ)

+
1
2
J

∑

〈i,j〉

(
si · sj − 1

4
ninj

)
(1)

with the usual definitions njσ = c+
jσcjσ, sx

j +isy
j ≡ s+

j = c+
j↑cj↓, sz

j =
(1/2)(nj↑ − nj↓), nj =

∑
σ njσ. The Hamiltonian (1) was derived [1] in the strong

coupling limit U À |t| as an approximate equivalent of the single band Hubbard
Hamiltonian H = −∑

i,j,σ tc+
iσcjσ + U

∑
i ni↑ni↓; some three-particle type terms

were neglected. The first term in (1) describes correlated hoppings of electrons
such that double occupancies of sites are suppressed since they would involve high
energy costs in the limit U À |t|. The second term, with J = 4t2/U has a
form of an effective exchange interaction of the spins of electrons on neighbouring
ions (Cu2+ in CuO2 planes, or centres of the wave functions of the Zhang–Rice
singlets [5] in a more realistic description).

In the case of half-filling, i.e. one electron per lattice site when the eigenval-
ues of ni,−σ = 1 and ni,σ = 0 for all lattice sites i, the Hamiltonian Ht−J reduces
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to the Heisenberg type Hamiltonian with the exchange (“kinetic exchange” [1]) in-
teraction J favouring antiparallel alignment of spins of electrons on neighbouring
sites. For small deviations from the half-filling situation we have a low concen-
tration of carriers (holes) x = 1 − 〈ni,−σ〉. The motion of holes is highly corre-
lated with states of the all electrons in system in a quite nontrivial way as we
can guess from the above-mentioned intuitive picture. Helpful in understanding
complexities of the correlated motions of the holes is the concept of spin-charge
separation. First, we have to implement the fundamental restriction on the t−J

Hamiltonian (1) by eliminating in calculations states with double occupancies of
any site i, i.e. eigenvalues of niσni,−σ must be 0 for each site i. There are a
few ways of eliminating “unphysical” states with double occupancies, from simple
heuristic approaches [2, 3] to a formal derivation of a Hamiltonian equivalent to
(1) in the space of physical states, i.e. states with single occupations only [6]. In
the present lecture we shall use the simple exact procedure conserving the time-
reversal symmetry proposed in [7] and applied to the spin polarons problem in [8].
The physical space of only single-occupied space is spanned on the three possible
local states for each lattice site i: |iσ〉, (σ = + or –), |i0〉 corresponding to an
electron at the site i with the spin projection σ and a hole at i. A physical insight
into the intricate correlated motion of electric carriers in the AF planes can be
obtained by the idea of spin-charge separation.

For each lattice site there are defined spinless fermionic holon operators
ei, e+

i and (formal)spin 1/2 operators Si. There are two possible holon states,
no-holon |i0〉h and one holon |i1〉h ones. By definition e+

i |i0〉h = |i1〉h,

ei|i1〉h = |i0〉h. Also, there are two spin states at i, spin-up |i ↑〉s and spin-
-down |i ↓〉s ones. The local Hilbert space being the tensor product of the holon
and spin states thus contains 2 × 2 = 4 states. The physical local space con-
sists of 3 states for each i: |iσ〉s, |i0〉s. Therefore, to map the local physical
space into the holon–spin space it is necessary to devise a way of eliminating one
redundant local state. It was proposed [7] to define local spin states as the super-
positions |is〉s = (1/

√
2)(|i ↑〉s+eiϕ|i ↓〉s) and |iS̄〉s = (1/

√
2)(|i ↓〉s−e−iϕ|i ↑〉s)

which are orthogonal to each other, ϕ is an arbitrary phase. The physical space
is mapped into the holon–(formal)spin space [7] by the following equivalences:
|iσ〉 → |i0〉h|iσ〉s, |i0〉 → |i1〉h|is〉s. It can be shown, after implementing the map-
ping that matrix elements involving the state |iS̄〉s all vanish. That is the reason
for discarding the state |iS̄〉s as unphysical and we finally have one-to-one cor-
respondence of the local physical three states |iσ〉, |0σ〉 into the three holon–spin
states. The procedure of expressing the t−J Hamiltonian (1) in terms of holon ei

and spin operators Si can be easily done if we realize that the operators in the ki-
netic term in (1) are the Hubbard operators Xiσ = ciσ(1−ni,−σ) and their complex
conjugate X+

iσ. They have the simple properties, Xiσ|iσ〉 = |i0〉, X+
iσ|i0〉 = |iσ〉.

The representation Xiσ = |i0〉〈iσ| can easily be used to express Xiσ in holon ei
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and (formal)spin operators Si from the correspondence of states [7]:

Xiσ = |i0〉〈iσ| → |i1〉h|iS〉s s〈iσ|h〈i0|. (2)
Since e+

i |i0〉h = |i1〉h, S+
i |i ↓〉s = |i ↑〉s, S−i |i ↑〉s = |i ↓〉s

|i0〉〈iσ| → Xi↑ = e+
i

1√
2
(S+

i S−i +eiϕS−i ) (3)

and, similarly

Xi↓ = e+
i

1√
2
(S+

i +eiϕS−i S+
i ). (3a)

It is easy to verify from the commutation rules of the local electron operators
ciσ, c+

iσ the following relations:

niσ = X+
iσXiσ, s+

i = X+
i↑Xi↓ (4)

and those derivable from (4). Now from (3) and (4), using the known commutation
rules for spin-1/2 operators S+

i , S−i , Sz
i we get e.g.

ni↑ = (1− e+
i ei)S+

i S−i , ni↓ = (1− e+
i ei)S−i S+

i ,

ni = ni↑ + ni↓ = 1− e+
i ei (5)

and

s±i = (1− e+
i ei)S±i , sz = (1− e+

i ei)Sz
i . (5a)

From (5a) it is evident, why we called Si the formal local spin operators as distinct
from the “true” local electron spin operators si: only if there is no holon at
the lattice site i, i.e. the eigenvalue of 1 − e+

i ei is 1, Si has a real physical
meaning; in the other case in the presence of the holon at i, 1− e+

i ei is 0 and Si is
spurious. Finally, the t−J Hamiltonian (1) expressed in the terms of holon ei, e

+
i

and (formal)spin-1/2 operators Si has the form [7]

H = −t
∑

〈i,j〉
eie

+
j

1
2
(fij + gij)

+
1
2
J

∑

〈ij〉
(1− e+

i ei)
(

Si · Sj − 1
4

)
(1− e+

j ej), (6)

where

fij = 2Si · Sj +
1
2
, (6a)

gij = S+
i

(
1
2

+ Sz
j

)
+

(
1
2
− Sz

i

)
Sz

j + S−i

(
1
2
− Sz

j

)
+ (1 + Sz

i )Sz
j . (6b)

The sums in (6) are over nearest neighbouring sites 〈i, j〉.
Earlier a slightly simpler expression for the t−J Hamiltonian in spin-charge

separate space was derived [6], in which fij stands simply for (1/2)(fij +gij) in (6).
However, while (6) acting on any contribution of the unphysical local states |iS̄〉s
gives exactly zero, due to a compensation of terms coming from fij and gij , that
is not true if only fij are present so using this simpler form of the Hamiltonian
there remains a need to eliminate somehow unphysical states from calculations.
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The choice ϕ = π/2 or −π/2 for the phase results in the Hamiltonian (6) having
the time-reversal symmetry.

2. Spin polaron

As already mentioned, in the case of half-filling, 〈e+
i ei〉 = 0 for all i, the t−J

model Hamiltonian (6) is reduced to the standard spin-1/2 Heisenberg exchange
Hamiltonian, which for some crystal lattices and for temperatures below a critical
value has an AF spin ordering. Since the CuO2 planes form a quadratic lattice
belonging to the class of bipartite lattices, the discussion to follow will be restricted
to such a case. A bipartite lattice can be divided into two sublattices, say A and B,
such that for a site j belonging to the sublattice A all its nearest neighbours are
from the sublattice B and vice versa. In order to deal with AF bipartite lattice it
is convenient to use a transformed coordinate systems with the local z-axis in the
points i ∈ B rotated by 180◦. Such transformation can be done by the operator [9]
T =

∏
l Tl where Tl = 1 for l = j ∈ A and Tl = (1 − e+

i ei)(S+
i + S−i ) + e+

i ei

for l = i ∈ B. It is easy to check that applying T to H, (6) results in replacing
fij → g̃ij , gij → f̃ij , in which S±i → S∓i , Sz

i → −Sz
i for i ∈ B.

In the exchange part HJ of H ≡ Ht +HJ , (6), rewritten as

HJ =
1
2
J

∑

〈i,j〉

(
Si · Sj − 1

4

)
− J

∑

〈i,j〉
e+
i eiSi · Sj(1− e+

j ej)

+
1
4
J

∑

〈i,j〉
e+
i ei(1− e+

j ej)− 1
2
J

∑

〈i,j〉
e+
i ei

(
Si · Sj − 1

4

)
e+
j ej , (7)

the first term is the Heisenberg exchange Hamiltonian as for undoped system
of real spins antiferromagnetically coupled, let us consider it as an unperturbed
Hamiltonian H0. For low concentration of holes x = 〈e+

i ei〉 ¿ 1, which we assume,
the last contribution to HJ (7) can be neglected because the possibility of finding
two holons on neighbouring lattice sites i, j is small. By the same arguments the
third term in (7), denoted as Hh, can be approximated by the expression

Hh =
1
4
J̄

∑

〈i,j〉
e+
i ej ,

where J̄ = J〈(1 − e+
i ej)〉 = J(1 − x). The second term in (7), denoted as Hh−S

below, can be simplified by the following arguments.
In the second term of the right hand side (r.h.s.) of Eq. (7) a fictitious

spin e+
i eiSi of a hole is interacting with real spins (1 − e+

j ej)Sj of neighbouring
electrons. The local Hilbert space of the variable Si at the site i occupied by the
hole is constructed from two states |is〉s and |is̄〉s, from which only the former one
gives non-zero matrix elements of physical quantities. In particular, as indicated
above H, (7), acting on a wave function containing |is̄〉s, i.e. belonging to the
unphysical spin space, will give zero. Therefore, it was proposed [8] to average the
unphysical spin in e+

i eiSi over the physical state |is〉s, i.e. to replace e+
i eiSi by
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e+
i ei s〈is|Si|is〉s. As a result the second term of the r.h.s. (7) is replaced by the

following expression:

Hh−s = −1
4
J

∑

〈i,j〉
e+
i ei(eiϕS−j + e−iϕS+

j )(1− e+
j ej). (8)

For a low concentration of holes x ¿ 1, J(1− e+
j ej) can be approximated by

J̄ as argued above.
The first term in (7), the exchange energy H0

ex, is the unperturbed Hamil-
tonian. For a bipartite lattice it has an AF ground state and by applying the
transformation T it takes the form

H̃0
ex = TH0

exT
−1 =

J

4

∑

〈i,j〉
(S+

i S+
j + S−i S−j − Sz

i Sz
j − 1/2). (9)

The standard procedure for diagonalizing in the linear spin wave (LSW) approx-
imation H̃0

ex is to express S±i , Sz
i in terms of (AF-) magnon boson operators (for

details see e.g. [10]): S−l ∼= al, S
+
l
∼= a+

l , Sz
l = a+

l al−1/2 and expanding al into the
Fourier components, al = N−1/2

∑
q eiq·Rl αq, . . ., where αq, α

+
q are a set of bosons

(the unfolded Brillouin zone (UBZ) is used with N standing for the number of lat-
tice sites and also the number of points in UBZ). H̃0

ex expressed in (αq, α
+
q ) contains

products α+
q α+

−q + αqα−q and α+
q α−q, so to diagonalize H̃0

ex the Bogolubov type
transformation to a new set of bosons (ζq, ζ

+
q ) is employed, αq = uqζq + vqζ

+
−q,

where uq = cosh ϑq, vq = sinh ϑq, and tanh 2ϑq = −γq, γq = (1/2)(cos qx + cos qy).
Finally, H̃0

ex =
∑

q ωq(ζ+
−qζq + 1/2) is expressed in terms of normal modes — AF

magnons, having energies ωq = 2J
√

1− γ2
q . The same transformations are applied

to Hs−h, (8), so for H̃J = THJT−1 we get

H̃J =
∑

q

ωq

(
ζ+
q ζq +

1
2

)
+ J̄

∑

i

e+
i ei +

∑
q

(Fqζq + F+
q ζ+

q ), (10)

where Fq = −N−1/2J̄γq(uq + vq)ρq and ρq =
∑

l e
+
l eleiq·Rl . The third term in

(10) describes the energy of interactions of magnons (ζq, ζ
+
q ) with the fluctuations

of the holons density ρq. Such interactions are well known in the theory of lat-
tice polarons. The standard method, like in the polaron theory, is to apply the
so-called shift transformation [11] ζq → Uζq = ζq + fq to the Hamiltonian H̃J in
order to eliminate the linear terms in (10). The unitary transformation has the
form [12]

U = exp

(∑
q

(F+
q ζ+

q − Fqζq)/ωq

)
(11)

(it is easy to check that fq has to be taken as −Fq/ωq). The transformed Hamil-
tonian H̃J → UH̃JU−1 is
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H̃J =
∑

q

ωq

(
ζ+
q ζq +

1
2

)
+ J1

∑

i

e+
i ei, (12)

where

J1 = J̄

[
1−N−1

∑
q

J̄γ2
q

ωq
(u2

q + v2
q )

]
. (13)

Now we have to express the transport term Ht in H, (6), in the same magnon
formalism. In the physical space the forms of Ht with (1/2)(fij + gij) or with
fij [6] are equivalent, so to simplify the formulae we shall use fij in what follows
and for the arbitrary phase ϕ we shall take ϕ = 0. To the THtT

−1 we apply the
LSW and then the shift transformation U to get

H̃t = −t
∑

〈i,j〉
Ueie

+
j (a+

i + aj)U−1. (14)

The factor U(a+
i + aj)U−1 can be easily expressed as a linear combination of

magnon operators ζq, ζ
+
q , whereas [8]

Ueie
+
j U−1 = eie

+
j Φij , (15)

where

Φij = exp
(
N−1/2

∑
q

Aq
ij(ζq − ζ+

−q)
)
, (15a)

Aq
ij = −J̄(eq·Ri − eiq·Rj )γq(uq + vq)/ωq. (15b)

The factor Φij in (15), reminiscent of the so-called band narrowing factor in the
lattice polarons theory, leads in general to a complicated pattern of multimagnon
processes. To propose an intuitive picture of the motion of holons in AF planes we
recall that average of fij , or fij + gij over the Néel AF state is exactly zero. This
observation corresponds to the fact already mentioned that in the Néel state holon
is localized. If we take into account fluctuations of spins, i.e. magnons, we get a

nonzero average N−1
∑

q(
√

1− γ2
q −1) of fij (or fij +gij) over a true ground state

involving zero point motion of spins. Thus holon can move, since it is assisted by
magnons. The average of Φij over the true AF ground state is

〈Φij〉 = exp
(
−N−1

∑
q

(J̄γq/ωq)2(1− γ2
q )−1/2

×[1 + γq cos q · (Ri −Rj)]
)

(16)

(the average over the Néel state 〈Φij〉 ≡ 1). The factor 〈Φij〉 can be interpreted
as narrowing the holon band width ∼ t to t〈Φij〉. In trying to estimate the band
narrowing factor there appear difficulties due to divergent sums over wave vectors
q in our two-dimensional system. The reason is that only at half-filling, i.e. when
there are no holons, x = 0, the long-range AF order exists in 2D. For finite x there
exists only a short range AF order with spin–spin correlation length of the order
of a/

√
x [13], where a is the lattice constant. Thus summations over wave vectors

in the system with a short-range order have to exclude the region at the centres
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of the Brillouin zone for q < qc ' π
√

x/a. For the nearest neighbours (i, j), 〈Φij〉
changes from 0.22 for x = 0.01, to 0.74 for x = 0.05, but extrapolates to 0 for
x → 0 (cf. [8]). For doping at the level of a few percent, as in the case of CuO2

planes in real systems of interest, the narrowing of the holon band is thus not very
dramatic. However, there are other fundamental questions connected with Φij . If
Φij is expanded into magnon operators it leads to multimagnon processes increas-
ingly difficult to deal with quantitatively.

The factor Φij can be expanded into a series Φij = 1+
∑

(. . .)(ζq− ζ+
q )+ . . .

For Φij
∼= 1 the transport Hamiltonian H̃t is reduced to H̃t

∼= −t
∑
〈i,j〉 eie

+
j U ×

(a+
i +aj)U+ corresponding to one-magnon type interactions with holons. The one-

-magnon processes are expected to be dominant and they will be studied in
detail. The effect of higher order processes can be estimated by approximat-
ing the expression (Φij − 1)U(a+

i + aj)U+ in H̃t, (14), (15), by its average
over the quantum AF ground state |0〉AF. The approximate correction w =
AF〈0|(Φij−1)U(a+

i +aj)U+|0〉AF was estimated in [8] for nearest neighbours 〈i, j〉,
w depends only on the holon concentration and is roughly w ∼= x/2 for x ¿ 1.

The holon operators ei are expanded into their Fourier components hk (ob-
viously, satisfying, like ei, e

+
i , fermion commutation rules)

ei = N−1/2
∑

k

eik·Rhk. (17)

The transport Hamiltonian takes now the form

H̃t = N−1/2
∑

kq

P (k, q)(h+
k hk−qζq + h.c.) +

∑

k

(−twγk)h+
k hk, (18)

where P (k, q) = 4t(γk−quq + γkvq), c.f. [3]. From H̃t, (18), it is evident that
holon movements are accompanied by disturbances in the AF order. The domi-
nant one-magnon term in H̃t corresponding to scatterings of holon with creation
or annihilation of an AF magnon was extensively studied in literature (cf. e.g. [3]).
The second term in H̃t, (18), having the form of an effective holon kinetic en-
ergy approximately accounts for multimagnon processes accompanying motions of
holes.

Now the total Hamiltonian H̃ = H̃t + H̃J takes the form

H̃ =
∑

k

Ekh+
k hk +

∑
q

ωq(ζ+
q ζq + 1/2)

+N−1/2
∑

kq

P (k, q)(h+
q hk−qζq + h.c.), (19)

where

Ek = −twγk + J1. (20)
H̃ in (19) has the well-known form of a Hamiltonian in the standard polaron
problem, the difference is that the kinetic energy Ek of carriers is now a small
correction only. Since J/t is quite small (a typical value for cuprates is about
J/t ∼= 0.3) also the magnon energy ωq ∼ J is lower than the interaction energy
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∼ P (k, q) ∼ t. Thus, unlike the case of classical lattice polaron we have a problem
of a strong-coupling and a simple perturbational treatment is not sufficient now.
While dealing with spin polarons strong-coupling problem it was proposed to use
the self-consistent Born approximation (SCBA) [2, 3]. The validity of the SCBA
was checked by numerical simulations (see e.g. [4]) and is considered as a firm
basis of the spin polaron theory.

For calculating the spin polaron spectrum the single-particle holon Green
function is considered

G(k, ω) = 〈0|hk(ω − H̃)−1h+
k |0〉, (21)

where |0〉 denotes the ground state of the holon–magnon system, i.e. the product
of the holon vacuum state and the quantum AF ground state of the magnon
subsystem. The Green function calculated in SCBA G(k, ω) has the form

G(k, ω) = 1/
[
ω − Ek −

∑
(k, ω)

]
, (22)

where the self-energy is given by [3]∑
(k, ω) = N−1

∑
q

|P (k, q)|2

×
[
ω − ωq − Ek−q −

∑
(k − q, ω − ωq)

]−1

. (23)

The calculation of G(k, ω), (22), (23), in SCBA corresponds to summing up to all
orders contributions from the interactions ∼ |P |2 which correspond to graphs with
no crossings of interaction lines [3]. The self-energy is calculated numerically from

Fig. 1. Spin polaron energy Eqp dispersion vs. k for the directions ΓX((0, 0)−(π, π)),

XM((π, π)−(π, 0)), MΓ ((π, 0)−(0, 0)), and MM∗((π, 0)−(0, π)), computed for

J/t = 0.3 for the quadratic lattice. The energy is measured in units of t, the wave

vector k — in the inverse lattice constant.
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the self-consistency equation (23) for a mesh of k-points covering the Brillouin
zone of the quadratic lattice. The quality of interest is the spectral function
F (k, ω) = (1/π)Im G(k, ω + iε). The spectral function F (k, ω) of holons strongly
interacting with magnons consists of a low-energy peak of a spectral weight varying
with the k and a broad basically incoherent spectrum. The lowest energy peak
is attributed to a quasiparticle — a bound state of a hole dressed in a cloud of
magnons, i.e. to a spin polaron. Thus the positions Ω of the lowest energy peaks,
on the energy axis ω for given wave vector Q determine the polaron energy Ω(Q).
An example of the energy dispersion curve for the spin polarons, calculated for
J = 0.3t (the value estimated as realistic for YBCO [4]) and x = 0.05 is given in
Fig. 1.

The spin polaron concept was introduced in efforts at understanding prop-
erties of the high Tc superconductors (HTcS). The polaron dispersion relation, a
simplest example presented in Fig. 1, and also obtained by extensive numerical
simulations [4], was confronted with measurements of the dispersion by angle-
resolved photoemission [14]. The model with only nearest neighbours hoppings of
holes is not confirmed by experiments. The spectrum changes significantly if also
intra lattice hoppings t′ are taken into account [8]. It was shown that a model
with hoppings up to the third neighbours can be brought into account with ex-
perimental data if the hopping parameters t, t′, and t′′ as well as J are chosen
accordingly [15].

3. Interaction of spin polarons

The concept of spin polarons is helpful in understanding complexities of mo-
tion of charge carriers within CuO2 planes in cuprates. The obvious question is
whether there exists a mechanism of pairing of spin polarons and whether they are
relevant for forming a superconductivity state in the cuprates. The problem of the
existence of bound states of two holes in AF planes was studied both by numerical
simulations [16–18] and by the several analytical approaches with approximations
not easy to verify [19–21]. Here we shall try to calculate the energy of a pair of
interacting holons, using an equivalent formalism for the energy of a single holon
and to compare this energy with a sum of energies of corresponding two indepen-
dent holons. For the two-holon states we cannot neglect the last term in HJ , (7),
which while vanishing for a single hole state, negligible for low concentration of
holes, now can play a role as a contact interaction of holes. The last term in HJ

will be simplified by approximating Si · Sj − 1/4 by its average value over the
quantum AF ground state. Therefore, now the total Hamiltonian including the
contact term Vhh will read H = H̃+ Vhh, where

Vhh = N−1
∑

kk′q

Wγqh
+
k−qh

+
k′+qhk′hk, (24)

where W = 2JAF〈0|(Si · Sj − 1/4)|0〉AF. For quadratic lattice W ∼= −1.16J

(cf. e.g. Eq. (28) in [8]). To find the energy of a holon pair, say (k, k′), the
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two-particle Green function is like (21),

G(k,k′, ω) = 〈0|hk′hk(ω −H)−1h+
k hk′ |0〉, (25)

here H = H̃+Vhh as discussed above. Again, G(k, k′, ω) is calculated in the SCBA

G(k,k′, ω) =
[
ω − Ek − Ek′ −

∑
(k,k′, ω)

]−1

, (26)

where the two-particle self-energy
∑

(k,k′, ω) is determined self-consistently by
the equation [22]

∑
(k, k′, ω) = N−1

∑
q

[
P 2

kqG(k − q,k′, ω − ωq) + P 2
k′qG(k,k′ − q, ω − ωq)

+2W 2N−1(γk−q − γk′−q)2G(q, q − k − k′, ω − ωq)
]
. (27)

Equations (27) and (26) for the self-energy of the pair of interesting holons can be
solved numerically by iterations similarly as for the single holon case. The calcu-
lations were done for the parameter value J/t = 0.3, relevant for real systems [22].
An example of the results is presented in Fig. 2. The energy of a pair of inter-

Fig. 2. Energy dispersion curves for a free pair of spin polarons k and k′, E1(k)+E1(k
′)

(dotted lines) and for a pair of interacting spin polarons, E2(k, k′) (full lines) calculated

for k′ = (0, π) (squares and crosses), and for k′ = (π/2, π/2) (diamonds and “+”), for

k directions, as in Fig. 1, computed for J/t = 0.3. Energies are measured in units of t,

points are calculated, lines are guides to the eye.

acting spin polarons k, k′, E2(k, k′) is compared with the sum of the energies of
“free” polarons E1(k) + E1(k′), for k along symmetry lines in the Brillouin zone
and for the two characteristic values of k′, i.e. k′ = (0, 0) and (π/2, π/2). The
energy difference ∆ = E2(k, k′)− E1(k)− E2(k′) is positive for all k and chosen
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values k′, as it is evident from Fig. 2. In fact, ∆ > 0 for all pairs of values (k, k′),
not only for those exemplified in Fig. 2. Extensive numerical calculations have
shown [22] that for J/t smaller than a critical value of the order of 0.5 for any
pair of values (k,k′) the energy difference ∆ is positive, therefore a hypothetical
bound state of two spin polarons would not be stable. Only for values J/t > 0.6,
out of a realistic range, there are some regions in the space (k, k′), where ∆ could
be negative. It can be thus concluded that pairing of spin polarons seems to be a
remote possibility for realistic situations.
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