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We study the dynamics of bright solitons in a Bose–Einstein condensate

confined in a highly asymmetric trap. While working within the framework

of a variational approach we carry out the stability analysis of the Bose–

Einstein condensate solitons against collapse. When the number of atoms in

the soliton exceeds a critical number Nc, it undergoes the so-called primary

collapse. We find an analytical expression for Nc in terms of appropriate

experimental quantities that are used to produce and confine the condensate.

We further demonstrate that, in the geometry of the problem considered, the

width of the soliton varies inversely as the number of constituent atoms.

PACS numbers: 03.75.–b, 03.75.Kk, 05.30.Jp

1. Introduction

A Bose–Einstein condensate (BEC) consists of trapped ultracold atoms all
in the same quantum state. In this state the atoms lose their individual identities
and behave as a single collective wave which is large enough to be optically im-
aged. In order to create a BEC, atoms are first confined within a strong magnetic
field and then the temperature of the atomic gas is continually lowered by laser
and evaporative cooling until the condensate is formed. If one confines the BEC
in only two directions, it will tend to disperse in the free direction. Because of
the energetics involved, the atom–atom interaction in freely propagating BEC is
characterized by the s-wave scattering length. The Feshbach resonance [1] allows
one to continuously tune the scattering length from a positive to negative value
(repulsive to attractive interaction) by means of applied magnetic field. For attrac-
tive atomic interaction we can have coherently propagating matter-wave packets
which travel over the BEC with neither attenuation nor change in shape. These
are the so-called bright solitons. For repulsive interaction we shall have dark soli-
tons. Understandably, a bright soliton is a peak on the BEC while a dark soliton is
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a notch with a characteristic phase step across it. In a BEC of 7Li atom Rice and
Paris teams [2] produced bright solitons, each of which represents a condensate of
actual atoms extracted from the main BEC.

When the number of atoms in a bright soliton exceeds a critical value, it
becomes unstable due to focusing nonlinearity arising from the attractive atom–
atom interaction. The transverse dimensions of the confinement then cause the
soliton to collapse. This is often referred to as the primary collapse [3]. In the
present work we shall envisage a variational study for the stability of bright soliton
in a highly elongated trap and thereby calculate the critical number of atoms (Nc)
that a soliton can hold before it undergoes the so-called primary collapse. We
shall see that the merit of our approach is its directness and simplicity because
the variational method sought by us provides a straightforward analytical model
to understand the dynamics of bright solitons.

To extract the relevant physical information regarding stability and/or col-
lapse we shall work within the framework of a mean field approximation. In this
approximation the dynamics of a BEC is modelled by 3D Gross–Pitaevskii (GP)
equation

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + V (r)ψ + U0|ψ|2ψ, (1)

where ψ(r, t) is the macroscopic wave function of the condensate. This wave
function is also called the order parameter. Here U0 = 4πh̄2as/m represents the
interatomic interaction with as, the two-particle s-wave scattering length and m,
the mass of the atom. The wave function ψ is normalized to the number of parti-
cles N in the condensates such that∫

|ψ|2dr = N. (2)

The potential V (r) confines the atoms in a trap. For harmonic trapping, V (r) is
given by

V (r) =
1
2
mν2

(
λ2

xx2 + λ2
yy2 + λ2

zz
2
)
. (3)

The parameters λx, λy, and λz describe anisotropy of the trap in the x, y, and z

direction, respectively. We shall work with a highly asymmetric trap as determined
by λx = λy = 1 and λz = νz/ν ¿ 1. Here νz represents the frequency along the z

directions and ν = νr, the radial frequency. Our system of interest is thus a quasi-
-one-dimensional (Q1D) BEC dispersing along the z direction. In the following we
derive an appropriate version of the GP equation that will be useful to study the
dynamics of BEC in highly asymmetric traps.

We consider (1) in a geometry in which the trapping potential in z is much
weaker than the corresponding potential in r = (x2 + y2)

1
2 . Further, we write the

equation in terms of dimensionless variables defined by
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τ = νt, ρ =
r

a0
, s =

z

a0
, ψ(r, z, t) =

u(ρ, s, τ)

a
3
2
0

. (4)

This gives

iuτ +
1
2
∇2u− 1

2
(
ρ2 + λ2

zs
2
)
u− 4πas

a0
|u|2u = 0. (5)

Here a0 =
√

h̄/mν is the size of the ground state solution of the noninteracting
GP equation. It is obvious that∫

|u|2d3ρ = N. (6)

We assume a separable ansatz for the solution of (5) such that [4]

u(ρ, s, τ) = φ(ρ)ξ(s, τ). (7)
From (5) and (7) we have

1
ξ

(
iξτ +

1
2
ξ2s − 1

2
λ2

zs
2ξ

)
− 4πas

a0
|ξ|2|φ|2 =

1
φ

(
−1

2
∇2

ρφ +
1
2
ρ2φ

)
, (8)

where ∇2
ρ stands for the Laplacian in the radial coordinate. In (8) the subscripts

on ξ stand for partial derivative with respect to that particular independent vari-
able. More specifically, ξ2s = ∂2ξ/∂s2. This equation shows that the presence of
atom–atom interaction does not permit clearcut separation of variables. However,
the fourth term in Eq. (8) is quite small. Thus, φ may be assumed to satisfy

−1
2
∇2

ρφ +
1
2
ρ2φ = νρφ (9)

with νρ being related to νr by a scale factor determined by the change of variables
sought in (4). Equation (9) represents the well-known eigenvalue problem for the
two-dimensional harmonic oscillator with the ground state solution given by

φ0(ρ) = e−ρ2/2. (10)
Combining (8) and (9) we write

iξτ +
1
2
ξ2s − 1

2
λ2

zs
2ξ − 4πas

a0
|ξ|2|φ|2ξ = νρξ. (11)

The low-frequency vibration along the z direction is quite unlikely to excite the
two-dimensional bosonic oscillator from its ground state. Thus (11) can be multi-
plied by φφ∗ and integrated over the ρ coordinate to get

iξτ +
1
2
ξ2s − 1

2
λ2

zs
2ξ − 2πas

a0
|ξ|2ξ = νρξ. (12)

Equation (12) represents the GP equation for a Q1D trap. For a true 1D system
one does not expect the collapse of the system with increasing number of atoms.
But the use of Q1D trap in controlling the condensate motion may result in the
collapse of a BEC soliton when the number of atoms in it exceeds a critical value,
say, Nc. We shall work with (12) to provide an analytical model to study the
collapse dynamics of bright solitons in a Q1D trap. Interestingly, Eq. (12) can be
written in a more convenient form by using the change of variable
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ξ(s, τ) = χ(s, τ) exp(−iνρτ). (13)
From (12) and (13) we get

iχτ +
1
2
χ2s − 1

2
λ2

zs
2χ− 2πas

a0
|χ|2χ = 0 (14)

with ∫ +∞

−∞
|χ|2ds = N/π. (15)

Equation (14) represents a desired form of the evolution equation in which the
atom–atom interaction is characterized by a negative scattering length. The re-
alistic 1D limit in (14) is not a true 1D system because this equation involves
the effect of transverse degrees of freedom through λz and a0. In this context we
note that a similar equation with ψ(r, z, t) chosen as u(ρ, s, τ)/

√
a3
0/N was used

by Pérez-Garćıa et al. [4] to qualitatively demonstrate that if the number of par-
ticles is large enough, the condensate is unstable and the collapse occurs. We are,
however, interested to derive a straightforward analytical model to understand the
collapse dynamics and thereby provide a quantitative estimate for Nc. To that end
we convert, in Sect. 2, the initial-boundary value problem in (14) to a variational
problem. In particular, we present an expression for the Lagrangian density and a
trial wave function involving variational parameters to study the stability of bright
solitons against collapse. We also obtain the evolution equations for these param-
eters. In Sect. 3 we judiciously use the derived evolution laws to study the soliton
dynamics with particular emphasis on the stability of solitons against collapse.

2. Variational formulation

The action principle

δ

∫ ∫
L(χ, χ∗, χs, χ

∗
s, χτ , χ∗τ )dsdτ (16)

with the Lagrangian density given by

L =
i
2

(χχ∗τ − χ∗χτ ) +
1
2
λ2

zs
2χχ∗ +

πas

a0
χ2χ∗2 +

1
2
χ∗sχs, (17)

is equivalent to (14). We shall use this expression for L to study the dynamics of
bright solitons in terms of a variational method often called the Ritz optimization
procedure [5]. In this procedure the first variation of the variational functional
is made to vanish within a set of suitable chosen trial functions such that the
field theoretical problem under consideration reduces to a simple problem of point
mechanics. For the negative scattering length the Gaussian trial function for
χ(s, τ) is a very reasonable ansatz. Thus we write

χ(s, τ) = A(τ) exp
(−s2/2a2(τ)+ib(τ)s2/2

)
. (18)

Here A(τ) is a complex amplitude, a(τ) — the width of the distribution and b(τ)
— the frequency chirp. The phase of the condensate δ(τ) is defined by A(τ) =
|A(τ)|eδ(τ). The amplitude A(τ), width a(τ), and the chirp b(τ) will all vary with
the time parameter τ . The initial condensate at rest will have da(τ)/dτ = 0.
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Inserting the trial function in (18) into the variational principle stated in
(16) we obtain a reduced variational problem

δ

∫
〈L〉dτ = 0 (19)

with

〈L〉 =
∫ +∞

−∞
LGds. (20)

Here LG represents the result obtained by inserting the Gaussian ansatz (18)
into the Lagrangian density in (17). It is rather straightforward to perform the
integration in (20) and get

〈L〉 =
√

π

[
i

2
(AA∗τ −A∗Aτ )a +

1
4
bτa3AA∗

+
1
4
λ2

za
3AA∗ +

π√
2

as

a0
aA2A∗2 +

1
4

(
1
a

+ b2a3

)
AA∗

]
. (21)

Let us now obtain the variational equations for the Gaussian parameters
A(τ), A∗(τ), a(τ), and b(τ) which follow from the vanishing conditions of δ〈L〉/δA,
δ〈L〉/δA∗, δ〈L〉/δa, and δ〈L〉/δb. These equations are given by

δ〈L〉
δA

= iA∗τa +
i
2
A∗aτ +

1
4
bτa3A∗ +

1
4
λ2

za
3A∗

+π
√

2
as

a0
aAA∗2 +

1
4

(
1
a

+ b2a3

)
A∗ = 0, (22)

δ〈L〉
δA∗

= −iAτa− i
2
Aaτ +

1
4
bτa3A +

1
4
λ2

za
3A

+π
√

2
as

a0
aA2A∗ +

1
4

(
1
a

+ b2a3

)
A = 0, (23)

δ〈L〉
δa

=
i
2

(AA∗τ −A∗Aτ ) +
3
4
bτa2AA∗

+
3
4
λ2

za
2AA∗ +

π√
2

as

a0
A2A∗2 +

1
4

(
− 1

a2
+ 3b2a2

)
AA∗ = 0 (24)

and
δ〈L〉
δb

=
1
2
ba3AA∗ − 1

4
∂

∂τ
(a3AA∗) = 0. (25)

From (22) and (23) we have found
d
dτ

(aAA∗) = 0 (26)

such that

a|A|2 = Q, a constant. (27)
The constant Q is simply related to the number of particles in the condensate
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since the value of the integral (15) is
√

πa|A|2. Combining (25) and (27) we get

b =
d
dτ

(ln a). (28)

Equations (27) and (28) clearly show that if we can derive a method to calculate
the values of a(τ), the other parameters of the condensate will be automatically
determined. Fortunately, (22), (23), (24), and (28) can be combined to write a
second-order ordinary differential equation, the first integral of which gives

1
2

(
da

dτ

)2

+
1
2
λ2

za
2 +

√
2
π

Nas

a0

1
a

+
1

2a2
= E, (29)

with E, the constant of integration.
The equation for a(τ) in (29) is related to the motion of a particle in a

potential field V (a) so that

1
2

(
da

dτ

)2

+ V (a) = E. (30)

Here

V (a) =
1
2
λ2

za
2 +

P

a
+

1
2a2

, P =

√
2
π

Nas

a0
. (31)

Thus one would like to interpret the constant of the motion E as the total energy
of the particle. It is easy to verify that there is no physical uncertainty in the
identification sought because

∫ +∞
−∞ HGds represents the left side of (29). Here HG

stands for the result of the Hamiltonian density calculated from (18) and rewritten
by using the Gaussian ansatz. Obviously, E is determined by the initial conditions
of the second-order differential equation from which (30) has been extracted. It is
not difficult to solve (30) and look for the dynamics of the condensate. However,
the analysis of the equilibrium point obtained from the extremum of V (a) written
as

dV (a)
da

= 0 (32)

can give some illuminating results.

3. Dynamics of bright solitons

For bright solitons the nonlinear interaction is attractive and the scattering
length as < 0. In this case we shall use P = −|P | and carry out the subsequent
analysis by using only the numerical values of as. We shall make use of (32) to
derive a simple physical picture for the collapse dynamics of bright solitons when
the trap of the BEC is relaxed in one direction. From (31) and (32) with P = −|P |
we get

λ2
za

4 + |P |a− 1 = 0. (33)
The equilibrium point determined by (33) should be a minimum for (14) to support
a soliton solution. This gives

λ2
za

4 − 2|P |a + 3 = βa4, β > 0. (34)
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Eliminating |P | from (33) and (34) we find that

a =
1

(β − 3λ2
z)

1
4
, β > 3λ2

z, (35)

is a particular solution of (33) and (34). From (35) and (33) or (34) we get

|P | = β − 4λ2
z

(β − 3λ2
z)

3
4
. (36)

The form of (36) imposes a further restriction on the values of β than that given
in (35) and sets a lower bound for it. Using β = γλ2

z we write (36) in the form

|P | = γ − 4
(γ − 3)

3
4

√
λz. (37)

Thus non-zero values of P will be obtained for γ > 4 only. For γ = 4 the interaction
term vanishes and GP equation becomes linear and the soliton formation becomes
impossible.

From (31) and (37) we obtain an expression

N =
√

π

2
a0

|as|
γ − 4

(γ − 3)
3
4

√
λz (38)

for the number of atoms in the Q1D soliton.
In Fig. 1 we plot the potential V (a) in (31) as a function of a for as =

−1.59×10−4 µm, the scattering length of 7Li as used in the experiment of Strecker
et al. [6]. We have chosen to work with λz = 4

400 . In this figure we have four curves
represented by V4(a), V5(a), V6(a), and V7(a) corresponding to γ = 4, 5, 6, and 7,
respectively. A common feature of all these potentials is that each of them exhibits
a minimum. The curve for V7(a) represents a potential well between a1 = 5.0114
and a2 = 10.5468. The minimum of the well is negative. A mechanical analogy
suggests a solution which oscillates between the zeros of V7(a). In this case, the
spreading of the BEC is stopped at a = a2 by nonlinear effects which subsequently
compress the BEC back to the initial width. This behavior is repeated in an
oscillatory manner. In this situation the BEC soliton will become unstable and
lead to a mechanical collapse [7]. A similar situation arises for other values of
γ > 6.

For γ = 6 the potential well degenerates into a single point such that V6(a)
touches the a axis at a particular point, where the potential has a stable minimum.
Understandably, a particle released at this point will stay there. In the present
context this implies that for our chosen value of λz and γ = 6 the BEC bright
soliton will be critically stable. Using γ = 6 we get

N c = 0.8774
√

π

2
a0

|as|
√

λz. (39)

After the number of atoms exceeds this critical number, the soliton becomes unsta-
ble. More than a decade ago Ruprecht et al. [8] used a purely numerical routine to
set a limit for the critical number of atoms after which the BEC with the attractive
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Fig. 1. The potential V (a) as a function of a for λz = 1
100

.

two-body interaction becomes unstable. This limit was examined by Gammal et
al. [9] for different trapping geometries. Interestingly, the analytical expression in
(39) is in agreement with the observations of Refs. [8] and [9]. From (39) it is clear
that N c|as|/a0 ¿ 1. This represents the well-known relation for the existence of
stable solitons [10].

It will be interesting to see what happens if γ < 6. In order to see that we look
at the curve represented by V4(a). For γ = 4, |P | = 0 we do not have a nonlinear
term in the GP equation. In this case, no soliton can be formed. The minimum
of V4 is positive. This appears to suggest that weaker nonlinearities leading to
potential curves with positive minima will not be able to produce matter-wave
bright solitons. In our figure V5(a) represents one such curve.

Equations (35) and (37) can be combined to write

a(τ) =
C

N
, (40)

where

C =
√

π

2
γ − 4
γ − 3

a0

|as| . (41)

The result in (40) is remarkable and implies that, at a given instant of time, if the
number of atoms in the soliton increases, it becomes narrower. It is a real curiosity
to note that the result in (40) holds good even in the absence of trapping [4].
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[4] V.M. Pérez-Garćıa, H. Michinel, H. Herrero, Phys. Rev. A 57, 3837 (1998).

[5] G.B. Arfken, H.J. Weber, Mathematical Method for Physicists, Elsevier, New

Delhi 2004.

[6] L. Salasnich, A. Parola, L. Reatto, Phys. Rev. A 66, 043603 (2002); K.E. Strecker,

G.B. Partridge, A.G. Truscott, G.B. Hulet, New. J. Phys. 5, 73.1 (2003).

[7] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463

(1999).

[8] A.P. Ruprecht, M.J. Holland, K. Burnett, M. Edwards, Phys. Rev. A 51, 4704

(1995).

[9] A. Gammal, T. Frederico, L. Tomio, Phys. Rev. A 64, 055602 (2001).

[10] F. Kh. Abdullaev, A. Gammal, A.M. Kamchatnov, L. Tomio, Int. J. Mod. Phys.

B 19, 3415 (2005).


