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The atomic sphere approximation consists in replacing the Wigner–Seitz

polyhedron, containing individual atom, by the sphere of the same volume.

In the case of several not equivalent atoms per primitive cell, e.g. for SiC,

the radii of atomic spheres, centred at different atoms, are not uniquely

determined and should be judiciously chosen. In the present work one studies

the effect of choice of atomic sphere radii on the resulting electron band

structure and momentum density as well as the electron–positron momentum

density. Calculations were performed for SiC within the linear muffin-tin

orbital atomic sphere approximation method.

PACS numbers: 78.70.Bj, 71.15.Ap, 71.20.Mq

1. Introduction

The electronic properties of SiC, Si, and C have been widely studied [1–3].
The increasing interest in these semiconductors is mainly due to their vital impor-
tance for industry and technology. Here the positron annihilation spectroscopy
is a sensitive method to probe the electronic structure of the material under
study [4]. In particular, the angular correlation of annihilation radiation experi-
mental data provide useful information on the electron momentum density (EMD),
which is an important characteristics of the electron band structure in solids. How-
ever, in the interpretation of experimental and theoretical electron–positron (e–p)
momentum densities with respect to the electronic structure of the host material,
some deal of caution is necessary. In the present work one investigates, how far
the e–p momentum density calculated for SiC is sensitive to the details of the lin-
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ear muffin-tin orbital atomic sphere approximation (LMTO-ASA) band structure
method [5]. The independent particle model (IPM) seems to be most appropriate
for this purpose, since the IPM neglects the e–p correlation effect and therefore
allows to avoid additional contamination of the picture.

2. Calculations

The IPM e–p momentum density is given by the formula

ρIPM(p = k + G) =
∑

kj

|
∫

Ω

exp(−ip · r)ψkj(r)ψ+(r)d3r|2. (1a)

Here p and k stand for momentum in the extended and reduced zone scheme,
respectively, G is the reciprocal lattice vector, ψkj and ψ+ denote the electron
and positron wave functions and summation runs over all occupied electron Bloch
states kj. If the positron is uniformly distributed in the unit cell, i.e. if one as-
sumes that |ψ+(r)|2 = 1/Ω , where Ω is the volume of a primitive cell, then the
IPM formula (1a) reduces to the expression which defines the EMD:

ρEMD(p = k + G) =
∑

kj

|(1/
√

Ω)
∫

Ω

exp(−ip · r)ψkj(r)d3r|2. (1b)

The calculations of the electron and positron wave functions have been performed
for SiC within the LMTO-ASA band structure method [5]. Inside the sphere, con-
taining the atom of type t centred at position qt, the LMTO-ASA wave functions
for an electron in the state kj and a positron in its ground state 01 are approxi-
mated in the form

ψkj(r) =
∑

lm

ilYlm((r − q)/|r − q|) Akj
lmtϕ

t
l(|r − q|), |r − qt| ≤ St, (2a)

ψ+(r) = B01
t ϕt

+(|r − q|), |r − qt| ≤ St. (2b)
Here Ylm(r/r) are the spherical harmonics, l and m denote the orbital and mag-
netic quantum numbers, ϕt

l(r) and ϕt
+(r) are the solutions of the radial elec-

tron and positron Schrödinger equation inside the sphere of type t and St is
the radius of the atomic sphere (AS) centred at qt. The radial functions ϕt

l

and ϕt
+ are normalised to unity inside the relevant AS. Subject to the condi-

tion that the electron and positron wave functions are normalised to unity in the
unit cell, the associated eigenvector coefficients, Akj

lmt and B01
t , fulfil the relation∑

lmt |Akj
lmt|2 =

∑
t |B01

t |2 = 1.
The corresponding EMD and IPM e–p momentum density read as

ρEMD(p = k + G) =
∑

kj

|(1/
√

Ω)
∑

Lt

exp(−ip · q)ilYL(k/k)Akj
Lt

×
∫ St

0

jl(pr)φt
l(r)r

2dr|2 (3a)

and
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ρIPM(p = k + G) =
∑

kj

|
∑

Lt

exp(−ip · q)ilYL(k/k)Akj
LtB

01
t

×
∫ St

0

jl(pr)φt
l(r)ϕ

t
+(r)r2dr|2, (3b)

where L = (l, m) and jl(x) are the spherical Bessel functions of order l. The
Jarlborg–Singh correction [6], taking into account the lack of orthogonality of
plane waves inside the AS, was incorporated in terms (3a) and (3b).

The open diamond structure 3C was considered. This structure is usu-
ally modelled as the fcc lattice, containing four atoms per unit cell. For SiC
the two “full” atoms, Si and C, are located at positions q1 = (0, 0, 0) and
q2 = (a/4, a/4, a/4), respectively, and two “empty” atoms are at positions
q3 = (0, 0, a/2) and q4 = (a/4, a/4, 3a/4), where a is the lattice constant. In
this case the average radii of a sphere containing one atom, Sav, is defined in
terms of a as

4
3
πS3

av = a3/16.

In order to conserve the volume of the primitive cell by the sum of the spheres, the
radii of individual AS, centred at Si, C and “empty” atoms, SSi, SC, and Sempty

respectively, have to fulfil the condition

S3
Si + S3

C + 2S3
empty = 4S3

av.

TABLE I

Lattice constants used in the calculations

and corresponding average AS radii.

Si SiC C

lattice 5.43 Å ≈ 4.35 Å ≈ 3.58 Å ≈
constant 10.26 a.u. 8.22 a.u. 6.77 a.u.

Sav[a.u.] 2.527 2.024 1.666

The experimental lattice constants for SiC, Si, and C and corresponding
values of Sav are listed in Table I. It is worth noting that the lattice constant and
associated average atomic radius for SiC are intermediate between corresponding
values for C and Si. This fact suggests that the AS radii for inequivalent atoms
may differ. In the present work three various models were considered:

◦ Equal AS : SSi = SC = Sempty = Sav.

◦ Model 1: SC/SSi = aC/aSi, Sempty = SSi.

◦ Model 2: SC/SSi = aC/aSi, Sempty = Sav.

Here aC and aSi are the experimental lattice constants in carbon and silicon,
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TABLE II

Radii of AS centred at individual atoms for

three models under study.

SC [a.u.] SSi [a.u.] Sempty [a.u.]

equal AS 2.024 2.024 2.024

model 1 1.731 2.134 2.134

model 2 1.546 2.344 2.024

respectively. The resulting atomic radii are given in Table II. It should be noted
here that passing from the model of equal AS through model 1 to model 2, one
increases the value of SSi and decreases the value of SC.

3. Results and discussion

The change of model causes redistribution of the electronic charge in par-
ticular spheres, nt(r). The values of total electron charge contained in individual
spheres are listed in Table III. For each of three models under study, the Si sphere
is positively charged, while empty spheres have negative charge and contain about
one valence electron each. The change in ionicity of the sphere is clearly observed
for the C atom: from negative (about 0.4e) charge for the model of equal volume
of AS to positive charge for models 1 and 2. The electrons are shifted from the
carbon sphere towards the silicon sphere. Also the change of the radial distribution
nt(r) is most pronounced at the carbon atom. Within models 1 and 2, the valence
electrons, found close to the boundary of sphere containing the carbon atom, are
shifted partially towards the core region of C sphere, and mostly to the intersti-
tial region of the sphere centred at the silicon atom. The differences between the
models under study are hardly observed in the core electron distributions.

TABLE III

The total electron and positron charge contained in the in-

dividual ASs [a.u.].

Si C empty

e− e+ e− e+ e− e+

equal AS 11.996 0.1084 6.386 0.1442 1.618 0.7474

model 1 12.363 0.1297 5.564 0.0677 2.174 0.8026

model 2 13.234 0.2301 4.936 0.0393 1.830 0.7306

The negative charge of empty spheres attracts the positron and the major
part of the positron distribution (73–80% depending on the model) is found in
this region (see Table III). As concerns the C and Si spheres, positron density
distribution follows the changes in the electron charge. The probability of finding
a positron in Si sphere is an increasing function of SSi parameter and resulting
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valence electron density. The positron charge is shifted from the C sphere as value
of SC and the total electron charge inside the sphere decreases.

The band structures for SiC, calculated within three models, are compared
in Fig. 1 for momenta along main crystallographic directions. The slope of the
first band is very similar for all the models under study. The 1st band obtained
within the model 2 is shifted about 0.1 Ry below its counterpart of the model of
equal AS radii. The differences between the models are more pronounced in the
shape of the second, third, and fourth bands.

Fig. 1. The band structure calculated for SiC along main crystallographic directions

within three various models.

The value of the energy gap, resulting from the model of equal AS radii,
amounts to 2.13 eV and is a bit lower than the experimental one, equal to
2.36 eV [1]. It should be noted here that the energy gap, obtained for the model
of equal AS radii is strongly diminished to 0.1 eV for the model 1. However, the
most striking is the fact that within the model 2 the fifth, upper band starts to
contribute to the density of states, energy gap vanishes at all, and the Fermi sur-
face elements appear close to the X point. The latter is in contradiction to well
known semiconductor properties of SiC [1].

The band structure details are well reflected in the shape of the electron and
electron–positron momentum densities. The slope of these quantities is presented
in Fig. 2 for momenta along the direction [100] inside the first and second Jones
zone (JZ). Due to the symmetry rules [7], only the 1st and eventually upper (5th)
band can contribute to the electron and e–p momentum densities for momenta
along the [100] direction inside the first JZ. The contribution of the first band to the
EMD is very similar for all three models, as could be expected from the character
of this band, discussed previously. For momenta inside the first JZ the effect of
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choice of the AS radii model on the resulting spectra is much more pronounced
in the e–p momentum density than in the EMD. The same concerns the Fermi
surface elements, observed for the model 2. This feature can be attributed to the
positron redistribution among individual spheres, which is closely associated with
the relevant tendency in the electron charge. In the consequence, the changes in
ψkj(r) and nt(r) inside the spheres are considerably enhanced in the overlap terms
(3b) by the corresponding changes of ψ+(r).

Fig. 2. Electron (left part) and electron–positron (right part) momentum densities in

SiC calculated within three models for momenta along [100] direction.

Close to the X point the fifth upper band starts to contribute to the mo-
mentum density calculated within the model 2. The non-physical Fermi surface
breaks, observed in the EMD spectrum are considerably enhanced by a positron
distribution effect, as can be seen in the e–p momentum density slope.

For momenta along the [100] direction inside the second JZ, the only
non-zero terms in expressions (1) and (3) may come from the 2nd and upper
bands [7]. As can be seen in Fig. 2, the differences between the models occur in
the second JZ both for the EMD and IPM spectrum. It should be noted here that
the high momentum component of the IPM corresponds to the region, which is
probed by a positron with low probability. For this reason the IPM e–p momen-
tum density is diminished as compared to its EMD counterpart, while differences
between the models are of comparative order for IPM and EMD.

4. Conclusions

The present study is limited to the EMD and IPM, since these spectra con-
tain pure information on the electron and positron distributions in the material
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investigated. The e–p correlation effects enhance the picture, presented in the
right part of Fig. 2, especially close to the X point.

Concerning the influence of various AS models on the resulting band struc-
ture in SiC, one should note here that the LMTO band structure method bases on
the density functional theory (DFT) [8]. The principle of the DFT is to find the
electron density, which minimizes the total energy of the system. For any model
under study this condition is achieved for particular densities nt. However, the
total energy is lower for the model of equal AS radii than for models 1 and 2. The
second criterion, due to the ASA, is to reduce the overlap of the spheres, at least
in the region of high kinetic energy. Here the model of equal spheres volume seems
to be most appropriate.
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