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Starting from experimental cross-sections for positron scattering in ar-

gon and nitrogen, we examine different energy ranges. In the zero-energy

limit the cross-section falls with energy and can be described by modified

effective range theory for polarization potential. In a few eV range the

cross-sections are constant vs. energy. As far as it is possible to force the

elastic scattering phase shifts in a way that both experimental differential

cross-sections are reproduced and the total cross-section remains constant

in energy, such a model lacks the physical justification. Only the virtual-

positronium model, developed recently by Gribakin, reproduces a constant

dependence of the total cross-section in a few eV energy range.

PACS numbers: 34.85.+x, 39.90.+d

1. Introduction

Positrons injected into solids thermalise in a short time 10−12−10−11 s slow-
ing down to a few tens of meV kinetic energy and then drift for relatively long
time (10−10−10−7 s). Annihilation processes depend on the overlap of positron
and electron wave functions. This overlap is determined by the integral cross-
section for scattering, i.e. by some effective dimension of atoms, as seen by the
colliding positron.
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Quite recently it has been noticed [1] that in the limit of a few tens of
meV the annihilation rates measured in gas phase are much higher than it would
result from a number of electrons in the target. For example, in argon at 0.2 eV
the effective electronic number in atom is about 30, falling down to about 15 at
0.5 eV and then remaining constant up to 2.5 eV [1]. These annihilation rates
are huge for bigger molecules like hydrocarbons, reaching for example the effective
electronic number of 98000 for cyclohexane molecule [1]. One of the causes of such
huge annihilation rates can be resonance processes, observed near thresholds for
vibrational excitations [2], but the whole picture is still unclear. Here we analyze
total cross-sections for positron scattering. These comprise also the cross-sections
for annihilation, but up to the threshold for positronium formation (8.9 eV in Ar,
8.7 eV in N2) the elastic cross-section is the main part of the total one.

2. Experimental

Total cross-sections σ have been measured by an absolute method (i.e. with-
out arbitrary normalizations) in the range of 0.4–20 eV. The preliminary results
for Ar, N2, benzene, cyclohexane, and aniline have been presented in [3]. The
cross-section is determined using de-Beer-Lambert attenuation law:

I = I0 exp(−plσ/kT ), (1)
where I and I0 is the current with and without gas in the scattering region, respec-
tively, l is the length of the scattering cell, p is the gas pressure, T is temperature
of the gas, and k is Boltzmann’s constant.

Details of the experimental set-up have been given, for example, in Ref. [4].
Briefly, the spectrometer uses sodium 22Na isotope as a positron source, a thin
tungsten mono-crystal — as positron moderator, the electrostatic extraction optics
in the region of moderator and a guiding magnetic field (10 G) in the regions of the
scattering cell (which is 10 cm long and has 1.5 mm entrance and exit apertures).

A rise of cross-sections in the zero-energy limit is controversial, in particular
in the view of previous experiments and theories. In Fig. 1 we compare our cross-
sections in benzene with experiments by Sueoka [5–9] and collaborators, obtained
by them in different time periods. Depending on experimental details, the total
cross-sections by Sueoka show a rise [5] or a fall in the zero-energy limit [8]. We
guess that these discrepancies depend on the magnitude of the guiding magnetic
field used (varying between 3 G and 27 G [5]). Our data show a rise, down to
the lowest energy measured, in qualitative agreement with the ab-initio theory by
Occhigrossi and Gianturco [10].

Our results in nitrogen, see Fig. 2 show a rise in the low energy limit, con-
trasting with other experimental data [11–14] and also with some theories [15–19].
The most probable reason for such underestimation of cross-sections in experi-
ments is so-called angular resolution error. It is caused by the fact that due to
the finite dimensions of the scattering cell exit, some of the scattered positrons
can still reach the detector. This error is particularly big when guiding magnetic
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Fig. 1. Comparison of present cross-sections for positron scattering on benzene from

Trento lab with other experiments [5–9] and theory [9].

Fig. 2. Comparison of present cross-sections for positron scattering on nitrogen with

other experiments [11–14] and theories [15–19]. For present data different experimental

runs are shown by different symbols. For Sueoka data, triangles are his data corrected

for angular resolution error, see Ref. [27] for details.

fields are used. However, to quantify this error, angular distributions of scattered
positrons must be known. Nitrogen is one of a few fortuitous cases, where theoreti-
cal calculations extend down to zero energy and detailed angular distributions were
given [20]. Using these data we can evaluate that with 8 mm diameter exit slits
and 10 G guiding field, the measured cross-sections at 1 eV can be underestimated
by a factor of three. In the case of the present apparatus, only at energies below
0.06 eV the angular resolution error becomes significant (above 30%). Therefore,
from the experimental point of view, the rise of total cross-sections in the limit
of zero energy seems to be proved, at least for targets like N2, Ar, H2, benzene,
aniline, cyclohexane, see experimental data for all these targets in [3, 4].
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3. Zero-energy range rise: analytical modified effective range theory

The rise of the cross-sections would indicate importance of polarization po-
tential in scattering. A theory of scattering on a short range (“effective range”)
potential combined with the polarization one was formulated already in the sixties
of XX century [21]. It was the most frequently used in a form of expansion into
the series of electron (positron) wave number k

σ = 4π[A2 + (2π/3a0)αAk + (8/3a0)αA2k2 ln(ka0) + Bk2 + . . .] (2)
with a0 being Bohr’s radius, α — dipole polarisability, A being so-called scattering
length and parameter B depending on the effective range radius. (We recall that
the wave number k equals to positron momentum, if atomic units a0 = h = me = 1,
with me being electron’s mass, are used.) In spite of generally acceptance for the
modified effective range theory, its practical applications for electron scattering
gave rather poor results.

Idziaszek and Karwasz [22] have recently revisited the original formulation
of scattering on the polarization potential through the Schrödinger equation in a
spherical symmetry[

∂2
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]
Ψi(r) = 0, (3)

where Ψl(r) denotes the radial wave function for the l-partial wave and R∗ =
e/h̄

√
αµ describes a typical length related to the polarization interaction, e is the

electron charge, and µ is the reduced mass of positron-atom system.
In the paper [22] it was shown, how Eq. (3) can be reduced to Mathieu’s

modified differential equation (we recall Ref. [22] for a detailed description). By
solving the set of Mathieu’s equations for different partial waves, the phase shifts ηl

can be obtained analytically. We recall that the differential cross-section into the
scattering angle θ is defined by the scattering amplitude f(θ) as dσ/dω = |f(θ)|2,
where

f(θ) =
1

2ik

∞∑

l=0

(2l + 1)[exp(2iηl)− 1]Pl(cos θ) (4)

with Pl being Legendre polynomials.
The total cross-section is calculated as

σ =
4π

k2

∞∑

l=0

(2l + 1) sin2 ηl. (5)

The total cross-section obtained for argon is shown in Fig. 3 — one notes
immediately that the present theory applies much better than the simplified se-
ries (2). The four parameters describing the effective range and the scattering
length A for the s- and p-partial waves are given in Ref. [22]. In particular, the
scattering length for the s-wave (−5.58a0) agrees well with ab initio calculation
by McEachran et al. (−5.30a0) [23]. The present analysis indicates quite high
values of the cross-section in the limit of zero energy, about 110 Å2 in Ar and as
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Fig. 3. A modified effective range theory with an analytic solution (MERT), as devel-

oped in Ref. [22], applied to Trento experimental data in Ar [4, 27]. The cross-section

and collision energy are given in “characteristic” units, with R∗ = 3.35a0 (a0 — Bohr

units) and E∗ = 1.211 eV for argon. Short line is the simplified series, Eq. (2).

much as 290 Å2 in N2. It shows also that p-wave scattering dominates over s-wave
scattering already at about 1 eV, see Fig. 3.

The advantage of this new formulation of the modified effective range theory
is that it can be applied up to the energy of 1–2 eV, and therefore experimental
cross-sections in this energy region can be used for the extrapolation towards zero
energy. This analysis shows also that in the zero-energy limit these are polarization
forces which dominate in the scattering process.

4. A few eV energy range:
a hard-sphere model vs. virtual positronium formation

Several experiments in argon in a few eV energy range differ somewhat in
absolute amplitudes but all of them show constant, within experimental error
bars, total cross-sections, see a detailed comparison in Ref. [4]. In spite of this,
all theories show the total cross-section (i.e. integral elastic in this energy range)
falling slightly with rising energy. A constant cross-section would be specific to
hard-sphere scattering, and only in the classical approach. But in this case the
angular distributions should be uniform, which contradicts existing measurements
on targets like Ar and N2 [24].

To check whether the low-energy positron scattering can be described by a
hard-sphere quantum mechanical model, we tried a following, somewhat textbook
approach [25]. It is known that the integral cross-section for scattering on a hard-
sphere of radius a changes from 4πa2 in the zero-energy limit to 2πa2 in the infinite
energy limit, and the differential cross-sections show interference patterns. The
aim of the present check was to establish to what extent the integral cross-section
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changes in the range of a few eV and whether differential cross-sections show
interference patterns.

In the quantum model of scattering on a hard sphere, the s-phase shifts
can be obtained from the expression η0 = −ka and higher phase shifts can be
calculated from the formula

tan ηl = (−1)l−1 Jl+1/2(ka)
J−l−1/2(ka)

, (6)

where J are Bessel functions. For the present check we tried “reasonable” values
of hard-sphere radius a, i.e. in the range of a few angstroms. Some of the trials
are shown in Fig. 4, at a given energy of 6.75 eV (corresponding to k = 1.33 Å−1)
and for selected values of the ka product. It is clear from Fig. 4 that in order to
reproduce a pronounced interference pattern like that observed for N2 at 6.75 eV,
the product ka should be higher than 5.0. This, in turn, would correspond to
hard-sphere radii much exceeding the values of “atomic dimensions” as obtained
from viscosity measurements, van der Waals radii (1.47 Å for N2) and so on (see
also discussion in Ref. [26]). It would also yield the integral cross-section exceeding
by a factor of ten or more the values measured [4, 27] in a few eV energy range.
Clearly, the quantum mechanical hard-sphere model is not applicable to low-energy
positron scattering.

Fig. 4. Differential cross-sections (Eq. (4)) using phase shifts from hard-sphere quan-

tum model, Eq. (6) for several values of ka (a being the radius of the sphere) compared to

the experimental (relative) differential cross-sections for positron scattering on N2 [24].

Calculations have been done for the collision energy of 6.75 eV (corresponding to the

wave number k = 1.33 Å−1). The given range of the ka product corresponds to the hard-

-sphere radii a between 1.1 and 6.0 Å. Only high values of a give an interference pattern

in the differential cross-section, but then the integral cross-section (Eq. (5)) exceeds

experimental values (Ref. [27]) by a few folds. The left ordinate scale corresponds to

theoretical values, the right one (in relative units) to the experimental values.
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Therefore we checked an alternative, phenonomenological approach. We did
not calculate phase shifts from a given potential but adjusted them in an arbitrary
way with two constraints. The first one was to maintain the integral cross-section
constant in the 5–15 eV range, the second one was to reproduce the shape of
experimental differential cross-sections [24] (which, we recall, were obtained in
relative units).

Presently fitted differential cross-sections at 5 eV and 15 eV are compared to
experimental data [24] and ab-initio theory [23] in Fig. 5. We have adjusted only
four partial waves phase shifts but the present trial reproduces differential cross-
sections in the measured angular range not worse than the ab-initio calculations
by McEachran et al. [23]. The integral cross-section in this model amounts to
3.0 Å2 between 5 and 15 eV, in agreement with our experiment [27]. The phase
shifts calculated presently, apart from those for p and d waves at 15 eV, agree also
pretty well with those of McEachran et al. [23], see Table.

Fig. 5. Phenomenological approximation of the experimental differential cross-sections

for positron-Ar scattering [24] at two chosen energies: 5 eV and 15 eV. We omit a figure

for 8.7 eV, with similarly good approximation of experimental data [24]. The constraint

for this approximation was a constant integral cross-section, of 3.0 Å2, equal to the value

measured between about 2 and 8 eV in Ref. [27]. Experimental (relative) values were

normalized by arbitrary factors, to allow a comparison with present theoretical curves.

The only problem with this approach is that no physical potential has been
attributed to the phase shifts. However, this result indicates that taking into
account the elastic scattering solely, one could reproduce the constant integral
cross-section up to the positronium formation threshold.

At this point we quote the only other model reproducing constant cross-
sections, namely the recent many-body theory approach developed by Ludlow
and Gribakin [28] who introduced explicitly the process of virtual positronium
formation. Briefly, an incoming positron is closely coupled to one of the target
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TABLE

Phase shifts (in rad) for positron-argon scattering, used for differen-

tial (Eq. (4)) and total cross-sections (Eq. (5)) at three collision ener-

gies. Upper rows for each energy are from the present phenomenolog-

ical model, in which phase shifts were adjusted to reproduce exper-

imental (relative) differential cross-sections [23] and a constant (ab-

solute) integral cross-sections (3.0 Å2), as it was measured in Trento

experiment [27]. Values in lower rows for each energy are from ab-

initio calculations [23].

Collision energy Phase shift ηl

(eV) l = 0 l = 1 l = 2 l = 3 l = 4

5.0 −0.2548 0.2478 0.1082 0.0401

−0.2198 0.2339 0.1231 0.0449 0.0194

8.7 −0.6161 0.2094 0.0454 0.1012

−0.4863 0.1520 0.1705 0.0801 0.0364

15.0 −0.8552 0.23038 −0.0384 0.1728

−0.7812 −0.0094 0.1724 0.1209 0.0638

Fig. 6. Integral cross-section (in atomic units) for positron scattering on argon in the

virtual positronium model (“many-body theory”, Ref. [29]) compared to the polarized-

orbital theory, Ref. [23] and experimental values (see Ref. [27] for labels). This picture

is courtesy of Prof. Gleb Gribakin.

electrons and this modifies the whole distribution of electrons in the target. The
application of a series of perturbative corrections to the electronic density of atom,
corresponding to the explicit inclusion of polarization and/or correlation effects
reproduces our experimental constant total cross-section, see Fig. 6 (this figure
was kindly allowed to us by Ludlow and Gribakin [29]). We are not aware of other
similar calculations.
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5. Conclusions

Combining the analysis of experimental results with a re-visited theoretical
model allows us to obtain a congruent picture of positron scattering in the low
energy range. The recent measurements indicate that cross-sections for positron
scattering rise in the limit of zero energy. An analytical solution of the effective
range problem with the polarization potential included [22] allows us to extrapolate
experimental cross-sections in the 0.5–2 eV energy range towards zero energy. The
values of zero-energy cross-sections obtained in this way exceed 100 Å2 for Ar and
200 Å2 in N2.

At higher energies, in order to reproduce constant cross-sections up to the
free-positronium threshold, the formation of virtual positronium must be allowed
for. Such pioneer calculations have been recently developed by Ludlow and Grib-
akin [29]. Finally we note that in the higher energy range, i.e. above the positro-
nium formation threshold, adding the experimental cross-sections for positronium
formation in Ar [30] to a constant-value elastic cross-section, as deduced from the
above phenomenological or “virtual positronium” models, allows us to reproduce
experimental total cross-sections from recent Trento measurements [27] within the
error bars.
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