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Relativistic Phenomena in Two-Quantum
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The kinematics of e+e− pair and annihilation quanta momentum vec-

tors have been presented basing on ellipse and spheroid properties. Using

the formulae resulting from the Lorentz transformation of momentum and

energy there was pointed out that the aberration and the longitudinal and

transversal Doppler effects are inseparably associated.
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1. Introduction

Two-quantum annihilation was applied for a long time to the solid state
studies. However, there still exist some subtleties, which are not connected with
the physics and mathematics of this phenomenon [1–7], but rather with individual
thoughts of the momentum vector kinematics, especially in the three-dimensional
case. This problem for two-dimensional case has been developed earlier [3–5].
Also in Refs. [2–7] it was pointed out that the longitudinal Doppler effect has
essential importance and transversal one is practically not crucial but interesting
from the theoretical point of view. It seems, there is also an aberration but it
has no importance in practical studies. In Sect. 2 one studies up this phenomenon
qualitatively by constructing two- and three-dimensional images of the momentum
vectors kinematics. In Sect. 3 we introduce after Ref. [2] several useful formulae
based on the Lorentz transformation. This transformation (see Appendix) permits
us to calculate all needed features of two-quantum annihilation.

2. Kinematics of the e+e− pair and annihilation quanta momentum
vectors

Let us consider the sphere, which is the geometrical place of all pi vectors
tips in the rest frame. The radius of this sphere is equal to pi = m0c. The
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Fig. 1. Geometrical construction pointed up the relationship between quanta and an-

nihilating pair momentum vectors. All symbols are explained in Sect. 2.

problem is how to transform this sphere to the laboratory frame. The answer to
this question is spheroid in the laboratory frame. In Fig. 1 one can see the ellipse,
which is the geometrical place of all pi with the origin in focus F1. Here a = OA

is the semi-major axis and b = OB the semi-minor axis of the ellipse, c = OF1

and c = OF2. The eccentricity is defined as e = c/a. The distance from a focus of
the ellipse to the ellipse itself, measured along a line perpendicular to the major
axis is equal to d = b2/a. This formula is a special case of the equation

r =
d

1 + e cos θ
(2.1)

for θ = π/2, where r — distance from a focus to ellipse for any angle θ between
r and the major axis a. Now we assign the annihilation parameters to the ellipse
ones. Dashed lines indicate two other cases of pi pairs presented as an example
and fulfilling the condition pi + pi+1 = 2a for all odd i.

In the case presented we have

p1 + p2 = p, p1 = p2 and p1 + p2 = 2a. (2.2)
The focus F1 is the place of pair annihilation, the vector p means the pair mo-
mentum. Let us know that p is a distance between foci and therefore equals to 2c.
The copy of vector p2 has been shown by a dotted line in the physically correct
place, which is more geometrically suitable. In this construction the revolution
symmetry around major axis exists, creating the ellipsoid of revolution or another
words — spheroid. Such spheroid is described by Eq. (2.2), however it should be
known here that the relations between vector lengths are not realistic because the
effect was strongly enhanced in Fig. 1 for more clarity of this picture. Basing on
formulae (2.1), (2.2), and the equation of ellipsoid of revolution

x2

a2
+

y2

b2
+

z2

b2
= 1, (2.3)

four exemplary spheroids were constructed and exposed in Fig. 2.
Let us now calculate the parameter b. The summary momentum of quanta

in the laboratory system is
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Fig. 2. Three-dimensional construction of the momentum spheroids. Bold vector cor-

responds to pair momentum. The conical like subfigures inside spheroids indicate three-

-dimensional distribution of annihilation quanta momentum vectors. Four examples

with characteristic different angle between x axis (the horizontal line) and the direc-

tion of vector p are presented: (a) p parallel to x axis; (b) p perpendicular to x axis;

(d) intermediate p angle for θ = π/6; (c) the case for θ′ = π/2 in the rest frame.

E2

c2
= 4m2

0c
2 + p2, (2.4)

a2 = p2
1,2 = m2

0c
4 + p4/4 and b =

√
p2
1,2 −

p2

4
, (2.5)

so at last one obtains

b = m0c, (2.6)

a = m0c
√

1 + k2/4, (2.7)
where k = p/m0c.

Taking into account geometrical properties of the ellipse, it can be easy to
show that for another interesting case, when pi is perpendicular to the x axis, the
result is
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pi = m0c
1√

1 + k2/4
. (2.8)

If the direction of pi is parallel to x axis, the momenta p1 and p2 fulfill the following
relation:

p1 =
p

2
+

√
m2

0c
4 +

p2

4
, (2.9)

p2 =

√
m2

0c
4 +

p2

4
− p

2
. (2.10)

Obviously, we have p1 − p2 = p.
We know that the spheroidal shape of surface of momenta comes from dif-

ferent values of θ′ in the rest frame, which moves along the x axis. An observer in
the laboratory system can see the spheroid oriented in different directions, when
the direction of pair momentum vector changes in space. It is worth knowing that
the focus F1 is the point of rotation of the spheroid. The observer should register
only those events (momenta), which form the conical surface inside the spheroid.
Some comments about conical like shapes presented in Fig. 2 should be made.
This shape clearly demonstrates that the solid angle corresponding to annihila-
tion γ rays moving towards the same hemisphere as annihilating pair is unequal
to the angle corresponding to those ones moving towards the opposite hemisphere.
Maybe this phenomenon could be called an aberration?

3. Energy and momentum transformation in relativistic mechanics

Following [2] and formulae from Appendix one can write

x2 + y2 + x2 = c2t2, (3.1)

E2 = p2c2 + m2
0c

4. (3.2)
Putting m0 = 0 in (3.2) we obtain the expression (3.3) which allows us to presume
the same way of relativistic transformation of momentum components as for the
space ones. Also, we expect the energy should transform as a time

p2
x + p2

y + p2
z =

E2

c2
, (3.3)

x′ =
x− V t√
1− V 2/c2

, t′ =
t− V x/c2

√
1− V 2/c2

. (3.4)

After (3.3) and (3.4), putting γ = (1 − V 2/c2)−1/2, we may write the relevant
formulae in the following form:

p′x = γ

(
px − V

E

c2

)
, px = γ

(
p′x + V

E′

c2

)
,

p′y,z = py,z, py,z = p′y,z (3.5)
for momentum. Consequently

E′ = γ(E − V px), E = γ(E′ + V p′x) (3.6)
for energy transformation.
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If we take into account momenta and energy of annihilation photons in the
center of mass of annihilating pair (primed coordinates), then for any p′ and θ′

associated with p′ one can write

p′x =
hν′

c
cos θ′, p′y =

hν′

c
sin θ′, p′z = 0, E′ = hν′.

Making the use of (3.5) we get the following formulae

px =
hν

c
cos θ = γ

(
hν′

c
cos θ′ + V

hν′

c2

)
, (3.7)

py =
hν

c
sin θ =

hν′

c
sin θ′, (3.8)

pz = 0. (3.9)
For transformation of the energy of annihilation quanta from the rest frame to the
laboratory coordinates we get the expression

E = hν = γ

(
hν′ + V

hν′

c
cos θ′

)
. (3.10)

The simplification of the terms (3.7) to (3.10) leads to the following formulae:

ν cos θ = γν′
(

cos θ′ +
V

c

)
, (3.11)

ν sin θ = ν′ sin θ′, (3.12)

ν = γν′
(

1 +
V

c
cos θ′

)
. (3.13)

Dividing (3.11) by (3.13) one gets a well-known formula joining the relations be-
tween θ and θ′ angles in both the laboratory and the rest frame

cos θ =
cos θ′ + V

c

1 + V
c cos θ′

. (3.14)

Let us consider, basing on (3.14), two cases in the laboratory system. The first,
when the annihilation quantum flies perpendicularly to the direction of positron–
electron motion and the second one when the directions of both quanta momen-
tum vectors and pair momentum vector are parallel. The first case corresponds to
θ = π/2 and, from (3.14), it follows that cos θ′ = −V/c. Inserting this to (3.13)
one obtains the following:

ν = ν′γ−1. (3.15)
The above equation presents the phenomenon known as the transversal Doppler
effect. The case with θ = 0 implies θ′ = 0. It leads to the following formula:

ν+ = ν′
(

1 + V/c

1− V/c

)1/2

. (3.16)

This is the situation when the annihilating pair moves towards the observer in the
laboratory frame. The opposite case for θ = π and θ′ = π leads to the equation
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ν− = ν′
(

1− V/c

1 + V/c

)1/2

. (3.17)

Expressions (3.16) and (3.17) represent the so-called longitudinal Doppler effect.
Let us calculate

∆+ = ν+ − ν′, (3.18)

∆− = ν′ − ν−, (3.19)

∆+ −∆− = 2(γ − 1)ν′. (3.20)
The inequality of ∆+ and ∆− is clearly seen, but only for ν′ = m0c

2/h in (3.18)
and (3.19). Modifying ν in the following manner:

ν′′ = ν′γ

and substituting ν′′ by ν′ to (3.18) and (3.19) one obtains zero on the right hand
side of (3.20).

This involves, the point of reference for ±∆ν should be equal to pic/h, where
pi is established by vector p1 or p2 as marked in Fig. 1. In this specific state the
angle θ′ in the rest frame is assumed to be equal to the angle π/2 and θ2 − θ1 − π

(the measure of noncollinearity of vectors p1 and p2 in Fig. 1) achieves the largest
value. Also we have ±∆ν = 0. Using Eqs. (3.7) through (3.10) we are able to
calculate all possible relations between the angles and momentum vectors in the
rest frame and as well as in the laboratory frame.

4. Summary

In the present paper some ideas of three-dimensional representation of two-
-quantum annihilation phenomenon were introduced. It seems the interesting
insight on energy and momentum transformation in terms of special relativity
explained the Doppler effects from the other point of view [2]. In a recall of
Refs. [2, 3]) it has been indicated also the possibility of calculation of various an-
nihilation characteristics, basing on the relations between the parameters of the
ellipse being the cross-section in xy plane of the spheroid.

Appendix

In order to derive the Lorentz transformation equations [1] one assumes the
constant value of the light velocity in all inertial systems moving in x direction.
Secondly, the primed coordinate system moves along x axis with the velocity V

and it is the light source rest frame. For both systems the following equations
have to be fulfilled:

x2 + y2 + z2 = c2t2, (A.1)

x′2 + y′2 + z′2 = c2t′2. (A.2)
Initially, let us apply the simplest, the Galileo transformation to coordinate x′:

x′ = x− V t, y′ = y, z′ = z, t′ = t. (A.3)
Inserting (A.3) to (A.2) we have
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(x− V t)2 + y2 + z2 = c2t2,

x2−2xV t + V 2t2 + y2 + z2 = c2t2. (A.4)
As a result we have obtained expression (A.4), similar to (A.1), but with the ad-
ditional element (underlined). It means that the transformation should be more
complex. In this moment we assume a further transformation of the time t′ in the
form shown below:

x′ = x− V t, y′ = y, z′ = z, t′ = t + kx, (A.5)

−2xV t + V 2t2 + x2 + y2 + z2 = c2t2+c2tkx + c2k2x2. (A.6)
The resultant equation requests for elimination of marked terms with mixed prod-
ucts xt

−2xV t = 2c2tkx hence k = −V

c2
.

Including k to (A.5) we obtain

x2 − x2V 2

c2
+ y2 + z2 = c2t2 − V 2t2,

x2

(
1− V 2

c2

)
+ y2 + z2 = c2t2

(
1− V 2

c2

)
. (A.7)

After grouping, owing to terms related to x and t coordinates, we can fi-
nally write the well-known form of the Lorentz transformation equations, both for
primed and unprimed coordinate systems

x′ =
x− V t√
1− V 2/c2

, t′ =
t− V x/c2

√
1− V 2/c2

, (A.8)

x =
x′ + V t′√
1− V 2/c2

, t =
t′ + V x′/c2

√
1− V 2/c2

. (A.9)
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