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Two- and three-body correlation functions (number of pairs or triplets

vs. relative angular momentum) of electrons or Laughlin quasielectrons (i.e.,

composite fermions in their first excited Landau level) are studied numeri-

cally in several fractional quantum Hall liquids. It is shown directly that the

νe = 4/11 liquid (corresponding to a ν = 1/3 filling of composite fermions in

their first excited Landau level) is a paired state of quasielectrons, hence in-

terpreted as a condensate of “second-generation” quasiholes of Moore–Read

ν = 1/2 state of composite fermions.

PACS numbers: 71.10.Pm, 73.43.–f

1. Introduction

Observed by Pan et al. [1] fractional quantum Hall (FQH) effect in a spin-
-polarized two-dimensional electron gas at filling factors νe = 4/11, 3/8, 5/13, etc.
does not belong to the well-known Laughlin [2] or Jain [3] series of fractions at νe =
n(2pn± 1)−1 (with integral n and p). Jain states can be understood by assuming
that each electron captures an even number 2p of magnetic flux quanta φ0 = hc/e,
forming a so-called composite fermion (CF). The CFs exist in the reduced effective
magnetic field B∗ = B − 2pφ0% (% being electron concentration) and can occupy
their effective CF Landau levels (LLs), called CF-LLn, indexed by n ≥ 0. Laughlin
liquid is a filled spin-polarized CF-LL0, and its quasielectron (QE), quasihole (QH),
and reversed-spin quasielectron (QER) excitations correspond to a particle in
CF-LL1, a vacancy in CF-LL0, and spin-flip particle in CF-LL0, respectively.
When CFs fill more LLs, FQH effect in Jain state is observed.

Spin-polarized incompressible liquids at νe = 4/11, 3/8, and 5/11 correspond
to the situation when CFs full occupy their lowest CF-LL0, but the second one is
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filled only partially. The total CF filling factor is νCF = νe(1− 2pνe)−1 ≡ 1 + ν =
1 + 1/3, 1 + 1/2, and 1 + 2/3. These fractions can be obtained in hierarchical
model [4], where once again we reapply CF procedure (flux attachment) to the CFs
from partially occupied CF-LL1. Unfortunately, this procedure, leading to “second
generation” of CFs [5], has no justification in this case because of completely
different short-range interactions between the CFs and between the electrons [6].
For QEs, repulsion at short range is strongly reduced, and it cannot produce
a Laughlin incompressible quantum liquid of the QEs at the ν = 1/3 filling of
CF-LL1 [7]. In this work we present results of numerical studies of two- and three-
-body correlations in these FQH liquids, whose origin of incompressibility remains
controversial. We find evidence that in the state νe = 4/11 the CFs form pairs.
Hence, this state can be interpreted as a condensate of quasiholes of the “second
generation” Moore–Read state (of CFs).

2. Numerical calculations

In our model we take advantage of Haldane geometry [4], where N particles
are confined to a spherical surface of radius R with Dirac monopole of strength
2Q = 4πR2B/φ0 placed in the centre and producing radial magnetic field with
strength B at the surface. Each particle on the n-th LL has angular momentum
l = Q + n and degeneracy of each shell is g = 2l + 1.

Large systems with a well-defined filling factor ν = N/g are represented on
a sphere by a sequence of finite-size states with 2l = N/ν − γ, where γ(ν) is an
integral “shift” function. For the Laughlin ν = 1/3 state (e.g., of the electrons in
LL0), γ = 3; for the ν = 1/3 state of the QEs (i.e. νe = 4/11 of the underlying
electrons) it was identified as γ = 7 [6].

The N -body Hamiltonian is diagonalized numerically in the
configuration−interaction basis, in order to get the lowest eigenenergies and
corresponding eigenvectors at different combinations of N and 2l. It contains the
cyclotron energy and the interactions. The two-body interaction within a LL is
defined by a pseudopotential [8], i.e., interaction energy V2 as a function of the
relative pair angular momentum R = 2l − L. For identical fermions, R is an odd
integer, and larger R corresponds to a larger average squared distance between
the particles.

3. Haldane amplitudes and clusterization

The energy of N particles interacting through V2(R) can be written as

E =
∑

R
N 2(R)V2(R), (1)

where N 2(R) is the number of pairs with a given relative angular momentum R.

It is related to the so-called Haldane (pair) amplitude G(R) =
(

N

2

)−1

N 2(R),

normalized to
∑
R G(R) = 1. Sometimes, the qualitative properties of the system



Condensation of Nonabelian Moore–Read Quasiholes . . . 419

(e.g., a general form of the correlations) are determined completely by a few details
about pseudopotential. For example, every pseudopotential decreasing faster than
linearly with R induces Laughlin two-body correlations [7]. Using a simple model
of pseudopotential such as:

Uα(1) = α, Uα(R > 1) = 1/R2 (2)
and changing parameter α we can study a wide class of interactions, such as
electrons in the lowest and excited LL, and CFs in their excited LL.

For such pseudopotential we calculated G(1), G(3), and G(5) for the ground
states of two chosen configurations (N, 2l), representative of the ν = 1/2 and 1/3
states in CF-LL1. The results are ploted in Fig. 1. At α < −0.25 the Haldane
pair amplitude G(1) has its maximum value and the particles form one big ν = 1
quantum Hall droplet. For greater α, in both cases, the number of pairs with
R = 1 decreases and takes the minimum value for α > 0.3, which means no
clusters and Laughlin correlations. The number of pairs N2(R) changes values
quasi-discontinuously as a function of α and shows, visible for both configurations
(N = 12, 2l = 21 and 2l = 29), series of plateaus. This suggests that, depending
on interactions, the N particles group into various clustered configurations.

Fig. 1. Haldane pair amplitudes G(R), calculated for shells with 2l = 21 and 29, as

a function of parameter α of pseudopotential defined by Eq. (2), for the relative pair

angular momenta R = 1 (a), R = 3 (b), and R = 5 (c).

Now let us consider more realistic interactions. In Fig. 2a we show the
number of pairs N2 for the ground states of N = 12 particles (QEs and electrons)
as a function of double angular momentum 2l. For electrons on their first LL
we can recognize series of Jain states ν = n(2pn ± 1)−1. For electrons on LL1

and for QEs on CF-LL1 we can identify the ν = 1/2 series at 2l = 2N − 3, the
ν = 1/3 series at 2l = 3N − 7, and their particle–hole conjugates at 2l = 2N + 1
and 3N/2 + 2. As we can expect, for Laughlin/Jain states the number of pairs
decreases as a function of 2l, and it equals to zero for ν = 1/3. Similarly, for
2l > 29 in LL1 the N2 drops almost linearly with increasing 2l, aiming at zero
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Fig. 2. Number of pairs N 2(R = 1) (a) and triplets N 3(T = 3) (b) as a function of

double shell angular momentum 2l for interaction in different electron Landau levels

(LLn) and in the first excited CF Landau level (CF-LL1).

for 2l ≈ 35. This suggests Laughlin correlations in LL1 at sufficiently low filling.
In comparison, in the CF-LL1 there are considerably more pairs, almost the same
number as in LL2. We should emphasize that the ν = 1/2 state on the electron
LL1 is the Moore–Read state, which is known to be paired. Indeed, in this case
N2 ≈ N/2. A similar value is obtained for the ν = 1/3 state in CF-LL1.

To consider the possible occurrence of clusters containing more than two
particles it is convenient to use the three-body pseudopotential V3(T , β3), where
T = 3l − L3 is the three-body relative angular momentum, with the allowed
values T = 3 or T ≥ 5 for identical fermions. Here, L3 is the total triplet angular
momentum and β3 distinguishes between degenerate mulitiplets at the same T .
The many-body energy can be expressed as

E =
∑

T ,β3

N3(T , β3)V3(T , β3), (3)

where N 3(T ) is the number of triplets with a given T . Larger T means larger
expectation value of the area spanned by three particles. For T < 9 there is only
one possible triplet, so index β3 can be omitted.

In order to show the short-range three-body correlations we plot in Fig. 2b
the number of “compact” triplets with T = 3 as a function of 2l. Clearly, N3

quickly decreases with growing 2l for both LL0 and LL1, and at 2l = 21 it actually
reaches virtually zero. It means that for the sufficiently low ν, in both LLs there
are no triplets, and thus that no clusters larger than pairs form. The number of
QE triplets in CF-LL1 is also a nearly linear function of 2l, but it diminishes to
zero at 2l = 3N − 7 = 29, i.e. for ν = 1/3. The vanishing of N3 together with
having N2 = N/2 is the evidence of QE pairing at νe = 4/11.

The elementary excitations of the Moore–Read state at 2l > 2N − 3 are the
quarter-charged QHs (of the Laughlin liquid of pairs [9]) and the pair-breaking
neutral-fermion excitations. Being paired [10–12], the QE state at 2l = 3N − 7
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can only contain the QHs but no pair-breakers. The interaction of Moore–Read
QHs in CF-LL1 is not known, but evidently causes QH condensation at ν = 1/3
(even though the QE Moore–Read state at ν = 1/2 is unstable).

For 2l = 20 (i.e., at ν = 2/3 in CF-LL1, i.e., at νe = 5/13) the number of
triplets N3/N ≈ 1/3, suggesting that the system of N QEs is divided into N/3
clusters, each containing three particles. For 2l = 25 (i.e., at ν = 1/2 or νe = 3/8),
N3/N ≈ 1/6 implies a more complicated cluster configuration.

Fig. 3. Number of pairs N2 (a) and triplets N3 (b) as a function of the filling factor

N/(2l + 1) ≈ ν for systems containing N = 10 and N = 12 particles (electrons on LL0

and LL1 or quasielectrons on CF-LL1).

Finally let us compare results obtained for different system sizes. Figure 3a
shows the relative number of pairs N2(1)/N as a function of N/(2l+1) ≈ ν. Data
obtained for N = 10 reveal an almost identical, quasi-linear dependence as for
N = 12, with a different slope for different interactions. The fewest pairs can
be found for electrons on LL0, and the most for CF-LL1. In Fig. 3b we plot the
relative number of triplets N3(1)/N as a function of N/(2l + 1). Also in this
case the dependence seems to be linear for sufficiently large ν. The difference
between data obtained for N = 10 and 12 is much better visible here, especially
for electrons on the LL0 and LL1. However, we should remember that N = 10 is
not divisible by 3, so it is not a good candidate to test three-body clusterization.

4. Conclusion

In numerical calculations for the systems of N = 12 particles we showed
that the number of CF triplets with the minimum allowed T = 3 decreases as a
function of 2l from N3 = N/3 at ν = 2/3 to zero at ν = 1/3. At the same time,
the number of CF pairs with R = 1 decreases from N2 = N to N/2. This is the
evidence for CF pairing at ν = 1/3, i.e., in the corresponding νe = 4/11 FQH
state, in analogy to the signature of pairing in the half-filled Moore–Read state of
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electrons. Hence, the νe = 4/11 is interpreted as a condensate of the quasiholes of
the Moore–Read state of the CFs.
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