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We show that the phonon-induced pure dephasing of excitons in quan-

tum dots can be interpreted in terms of information leakage from the carrier

subsystem to the lattice environment. We derive a quantitative relation be-

tween the coherence of the system, as manifested by the amplitude of the

coherent optical polarization, and the amount of available which path infor-

mation on the system state, quantified by the distinguishability of states.
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1. Introduction

Interaction between carriers in quantum dots (QDs) and phonons leads to
dephasing phenomena, which manifest themselves as a partial decay of optical
coherence during the first few picoseconds after an optical excitation [1]. This
process is due to the spontaneous formation of a polaron-like deformation around
the confined charge distribution, accompanied by emission of phonon wave packets
into the bulk of the crystal [2, 3]. These wave packets correlate (entangle) the
confined carriers with the lattice of the macroscopic crystal, leading to decoherence
of the quantum state of the confined carriers [4].

In general, dephasing processes are related to a trace left by a quantum
system in its environment [5] which allows one, at least in principle, to infer in
which of the superposed states the system really was. For instance, in the well-
-known two-slit experiment, the interference vanishes if the particle leaves any
trace of its passage through one of the slits (due either to intentional measurement
or to uncontrolled dephasing), which makes it possible to determine the path it
has chosen (hence the term which path information) [6, 7]. The phonon-induced
dephasing in QDs can be interpreted in the same way: since the lattice relaxation
occurs only if a charge distribution is present in the QD, the presence of phonon
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packets is a trace that uniquely indicates the presence of an exciton and thus
destroys the coherence between the exciton and no-exciton state in a superposition.

In this paper we show that this picture is not just a qualitative interpretation.
Using the exact solution to the quantum evolution equations for the carrier–phonon
system [8] we calculate the amount of information on the exciton state contained
in the lattice environment (distinguishability of states [9]). We then derive a quan-
titative inequality which shows that the amplitude of coherent polarization in a
QD is limited by the amount of information transferred to the environment.

2. Carrier–phonon kinetics and pure dephasing

We restrict the discussion to the ground state of an exciton confined in a QD,
which is a very good approximation at low temperatures, under resonant excitation
with an appropriately polarized laser beam. We will assume that the exciton wave
function may be described as a product of electron and hole wave functions (which
is the case for sufficiently strong confinement [3]). For simplicity, we will describe
the latter as identical Gaussians with 4 nm width in the xy plane and 1 nm
along z. Under conditions assumed here, the most important dephasing effect is
that of deformation potential coupling to longitudinal acoustic (LA) phonons.

The Hamiltonian of the system is therefore

H = ε|1〉〈1|+ Hph + |1〉〈1|
∑

k

h̄ωk(g∗kbk + gkb†k), (1)

where the first term describes the energy of the confined exciton (ε is the en-
ergy difference between the states, including the Coulomb interaction but without
phonon corrections), Hph =

∑
k h̄ωkb†kbk is the Hamiltonian of the phonon sub-

system (ωk = ck is the frequency of a phonon with wave vector k, c is the speed of
sound and b†k, bk are the corresponding creation and annihilation operators) and
the third term describes the interaction, with

gk = (σe − σh)
√

1
2%VNh̄c3k

∫
d3rψ∗(r)e−ik · rψ(r), (2)

where σe,h are deformation potential constants for electrons and holes, VN is the
normalization volume of the phonon system, % is the crystal density, and ψ(r)
are single-particle wave functions. In our calculations we use typical parameters
for a self-assembled InAs/GaAs structure: σe − σh = 9.5 eV, % = 5300 kg/m3,
c = 5150 m/s.

The Hamiltonian (1) is diagonalized by the unitary transformation W =

|0〉〈0| ⊗ I + |1〉〈1| ⊗ w, where w = exp
[∑

k

(
gkb†k − gkbk

)]
, I is the identity op-

erator, and the tensor product refers to the carrier subsystem (first component)
and its phonon environment (second component). This allows us to find the sys-
tem evolution exactly. Let us assume that an ultrashort optical pulse at t = 0
performed a π/2 rotation, i.e., prepared the system state ρ0 = (|ψ0〉〈ψ0|) ⊗ ρE,
where ρE is the density matrix of the phonon subsystem (environment) at thermal
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equilibrium and |ψ0〉 = (|0〉 + |1〉)/√2. The system state at time t > 0 may then
be written in the form [8]:

ρ(t) =
1
2

(
ρE eiEt/h̄ρEw†(t)w

e−iEt/h̄w†w(t)ρE w†w(t)ρEw†(t)w

)
, (3)

where E = ε−∑
k h̄ωk|gk|2, w(t) = e−iHpht/h̄weiHpht/h̄ .

The density matrix for the carrier subsystem is obtained by tracing out the
phonon degrees of freedom,

ρS(t) = TrEρ(t) =
1
2

(
1 eiEt/h̄〈w†(t)w〉

e−iEt/h̄〈w†w(t)〉 1

)
. (4)

It may be shown [8] that |〈w†(t)w〉| = exp
[∑

k |gk|2(cos ωkt− 1)(2nk + 1)
]
, where

nk are bosonic equilibrium occupation numbers.
Equations (3) and (4) yield an exact solution to the evolution of the whole

system and of the carrier subsystem, respectively, and allow us to calculate any
physical quantity of interest.

3. Exciton dephasing and information leakage

From Eq. (4) it is clear that phonon effects result in pure dephasing of
the carrier subsystem, i.e., the occupation of the exciton state is not changed.
For sufficiently regular coupling constants (as in the case of all carrier–phonon
coupling mechanisms in QDs) the quantity |〈w†(t)w〉| decreases from the initial
value of 1 to a certain finite value that depends on the system parameters and
temperature. Since the coherent optical polarization P (t) is proportional to the
off-diagonal element of the reduced density matrix (4), the degree of dephasing is
reflected by the optical response of the system. As a result of the joint carrier–
phonon kinetics, the normalized coherent polarization is partly reduced over the
first few picoseconds of the system evolution according to

|P (t)|2 = P 2
0 |〈w†(t)w〉|2, (5)

as shown in Fig. 1a (cf. Ref. [10]).
Using Eq. (3), we can calculate the average lattice displacement following

the optical excitation of the QD, 〈u(r)〉 = Tr[ρu(r)], where

u(r) =
∑

k

√
h̄

2%VNωk

k

k
eik·r

(
bk + b†−k

)

is the displacement operator (for LA phonons). The result is shown in Fig. 1b.
The ultrafast excitation of the carrier subsystem is followed by spontaneous lattice
relaxation to a new equilibrium with a coherent polaron-like displacement field
formed around the QD. At the same time, the excess energy is transmitted to the
bulk of the crystal in the form of a phonon wave packet, visible in Fig. 1b as a ring
traveling with the speed of sound out of the QD region. By comparing Figs. 1a
and b one can see that the pure dephasing takes place during the time when the
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Fig. 1. (a) The decay of coherent polarization due to phonon-induced pure dephasing.

(b) Lattice evolution after an ultrafast excitation. The plots show the lattice displace-

ment in the xy plane at four times after the excitation.

traveling ring is created and the plateau is reached as soon as the phonon wave
packet leaves the dot.

As soon as the phonon wave packet leaves the dot the dephasing process
becomes irreversible. Moreover, by radiating phonons out into the bulk of the
crystal the exciton gets entangled with the macroscopic crystal lattice. This en-
tanglement with the environment is the mechanism of the decoherence shown in
Fig. 1a. On the other hand, the emitted phonon wave packet may be interpreted
as a trace of the exciton presence left in its macroscopic environment. In par-
ticular, if the optical pulse excites a superposition of an empty dot and exciton
states, only the latter will be accompanied by the lattice evolution. Hence, the
lattice state gets correlated (entangled) with the carrier subsystem. This kind of
correlation can be interpreted in terms of transfer of information (analogous to
the which path information in the Young experiment) from the exciton subsystem
to its environment.

This interpretation can be made quantitative with the help of a measure of
information on the carrier subsystem contained in its phonon environment. The
latter is defined as follows. One hypothetically performs a measurement on the
environment and uses its result to predict if an exciton will be found in the QD
in a subsequent measurement. The probability of a correct prediction ranges from
1/2 (guessing at random in absence of any correlations) to 1 (knowing for sure,
when the systems are maximally entangled). Quantitatively, an intrinsic measure
is provided by the distinguishability of states [9, 11], D = 2(p − 1/2), where p is
the probability for a correct prediction for the exciton state maximized over all
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possible measurements on the environment. In this way, guessing at random and
knowing for sure correspond to D = 0 and D = 1, respectively.

For a general density matrix of the compound system, ρ =∑
i,j=0,1 |i〉〈j| ⊗ ρij , it may be shown [8, 9] that the distinguishability is given

by D = (1/2)Tr|ρ00− ρ11|. Thus, for the carrier–phonon state of Eq. (3) one finds
for the distinguishability of carrier states due to correlations with the phonon
environment D(t) = (1/2)Tr|ρE − w†w(t)ρEw†(t)w|. One has, in general [12],
(1/4)Tr2|ρ− ρ′| ≤ 1− Tr2

√
ρ1/2ρ′ρ1/2. Hence

D2(t) ≤ 1−
[
Tr

√
ρ
1/2
E w†w(t)ρEw†(t)wρ

1/2
E

]2

= 1−
[
Tr

∣∣∣ρ1/2
E w†w(t)ρ1/2

E

∣∣∣
]2

. (6)

Since Tr|A| ≥ |TrA| we may write

Tr|ρ1/2
E w†w(t)ρ1/2

E | ≥ |Tr(ρEw†w(t))| = |〈w†(t)w〉|. (7)
Using Eq. (5) and combining Eqs. (6) and (7) we find the inequality

[
P (t)
P0

]2

+D2(t) ≤ 1, (8)

which relates the degree of coherence to the which way knowledge of the system
state.

4. Conclusions

We have shown that the system coherence and the amount of which path in-
formation that has been transferred to its environment are complementary quan-
tities. The decay of coherent polarization observed in experiments may be related
to the trace in the environment that allows one, at least in principle, to deter-
mine the system state. The loss of phase coherence may thus be interpreted as a
result of transferring information on the system state to the lattice environment.
Equation (8) reflects the fundamental complementarity that lies at the foundation
of quantum theory. While phase relations pertain to wave-like properties of the
quantum system, an attempt to determine the system state refers to particle-like
properties of the same system, like indivisibility of the relevant entity: when mea-
sured, an exciton in a QD may be either present or absent, with no intermediate
states. Here we have shown that optical experiments with semiconductor quan-
tum dots can contribute to these fundamental issues. In this way we provide a link
between the state-of-the-art experiments on semiconductor QDs and the general
theory of open quantum systems.
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