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We show that a one-dimensional approximation to a real three-

-dimensional atom offers good results for a selected group of the Rydberg

states. It is demonstrated in the context of evolution of the Rydberg wave

packets produced by the so-called half-cycle pulses.
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1. Introduction

In recent years there has been increasing interest in the generation and con-
trol of the Rydberg wave packets because of their possible use for, e.g., data storage
and processing [1]. Such operations can be performed by the application of a single
unidirectional half-cycle electric-field pulse (HCP) [2] of a duration much shorter
than the Kepler period Tn = 2πn3 (in atomic units, a.u.) of the n-th Rydberg
state (n À 1). HCPs are used for creating, manipulating and also sampling of the
Rydberg wave packets [3]. However, the dynamics of the Rydberg atoms kicked
by HCP is not well understood yet and it is often hard to analyze it because of
inconvenient formulae for the real three-dimensional (3D) atom. This problem
can be simplified, fortunately, when it is justified to introduce a one-dimensional
(1D) model of the Rydberg atom. Such a nearly 1D atom is, in practice, created
by photoexcitation of extreme members of the Stark manifolds in the presence
of a weak dc electric field [4]. The aim of this paper is to present a description
of the 1D Rydberg wave packet dynamics and to evaluate the correctness of this
approach by comparing the 1D results with the 3D ones.

2. 1D versus 3D Rydberg atoms

The 1D Rydberg atom is described by the Hamiltonian (in a.u.) [5]:

H = −1
2

d2

dx 2
− 1

x
, x > 0 (1)
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of the eigenvalues

En = − 1
2n2

(2)

and eigenfunctions

|n〉 =
2x√
n3

e−x/nF (1− n, 2, 2x/n), (3)

where F (a, b, c) is the confluent hypergeometric function. The use of the Fourier
transform results in the following momentum-space eigenfunction for the 1D
Rydberg atom [6]:

|n(p)〉 =
√

2n/π
(np + i)n−1

(np− i)n+1
. (4)

Because the classical trajectory of the 1D Rydberg atom mimics a line on
one side of the atom’s core, the compatibility between the 1D and 3D cases should
be the greatest when the probability density calculated from the 3D wave function
changes in one dimension, predominantly. The wave function of the 3D hydrogen
atom looks, in the parabolic coordinates, like [7]

Ψn,n1,n2,m =
1√
πn2

1
n|m| (|m|!)2

√
(n1 + |m|)!(n2 + |m|)!

n1!n2!

×eimϕξ
|m|
2 e−

ξ
2n F

(
−n1, |m|+ 1,

ξ

n

)
η
|m|
2 e−

η
2n F

(
−n2, |m|+ 1,

η

n

)
. (5)

We choose to use the parabolic coordinates because they are the most convenient
when working with the Rydberg states from different ends of the Stark spectrum.
Here, n1 and n2 are the parabolic quantum numbers fulfilling the relation n1 +
n2 + |m|+ 1 = n.

For n increasing from 6 to 60, we show in Table the ratio of the expectation
value of z to the expectation value of ρ =

√
x2 + y2 for the extreme Stark states,

TABLE

Ratios of z/ρ, where ρ =
√

x2 + y2, for the red

(n1 = 0, n2 = n − 1), blue (n1 = n − 1, n2 = 0)

and intermediate (n1 = n/2, n2 = n/2− 1) Stark

states versus n.

n z/ρ (red) z/ρ (intermediate) z/ρ (blue)

6 –2.102 0.234 2.102

10 –2.892 0.139 2.892

20 –4.276 0.069 4.276

30 –5.312 0.046 5.312

40 –6.177 0.035 6.177

50 –6.935 0.028 6.935

60 –7.618 0.023 7.618
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i.e., the red (n1 = 0, n2 = n − 1) and blue (n1 = n − 1, n2 = 0) ones and also
for an intermediate Stark state (n1 comparable to n2). The ratio is a measure of
quality of the 1D approximation and the higher ratio the better approximation.
As we can see, this ratio can be high for extreme Stark states, while for a state
from the center of the Stark manifold it is very small. The ratios for the extreme
(blue and red) Stark states are seen to increase with increasing n. We thus expect
that a reasonably large n is needed for the 1D approximation to be justified for
extreme Stark states.

3. Rydberg wave packet dynamics

When describing the Rydberg packet dynamics the most important is the
so-called form factor, which is the transition amplitude between any two Rydberg
states in the impulse approximation [8]. The form factor between f-th and i-th
state is defined as Tfi〈f|eiqx |i〉, where q is a momentum (in a.u.) transferred to
the atom from HCP. For the 1D case, it was derived by Bersons and Veilande [5],
although their formula needs to be multiplied by nn′:

Tnn′ = −z(λ− 2/n)n(λ− 2/n′)n′

√
nn′λn+n′

[(
n− 1

λ− 2/n
+

n′ − 1
λ− 2/n′

− n + n′

λ

)

×F (1− n, 1− n′, 2, z)F (1− n, 1− n′, 2, z)

− (n− 1)(n′ − 1)
2

(
1

λ− 2/n
+

1
λ− 2/n′

)
zF (2− n, 2− n′′, 3, z)

]
, (6)

where

λ =
1
n

+
1
n′
− iq, z = − 4nn′

(n− n′)2 + y2
, y = qnn′ (7)

and F (a, b, c, z) is the hypergeometric function. For the 3D case the form factor
is given by [9]:

Tfi = iyz
22|m|+1(nn′)|m|

(|m|!)2

√
(n1 + |m|)!(n′1 + |m|)!(n2 + |m|)!(n′2 + |m|)!

n1!n′1!n2!n′2!

× (n− n′ − iy)n1(n′ − n− iy)n′1(n− n′ + iy)n2(n′ − n + iy)n′2

(n + n′ − iy)n1+n′1+|m|+1(n + n′ + iy)n2+n′2+|m|+1

×
{

2nn′(n1 − n2) + (n′2 − n′1)(n
2 + n′2 + y2)

(n + n′)2 + y2

×F [−n1,−n′1, |m|+ 1, z(y = 0)] F [−n2,−n′2, |m|+ 1, z(y = 0)]

+n′1F [−n1,−n′1 + 1, |m|+ 1, z(y = 0)] F [−n2,−n′2, |m|+ 1, z(y = 0)]

−n′2F [−n1,−n′1, |m|+ 1, z(y = 0)] F [−n2,−n′2 + 1, |m|+ 1, z(y = 0)]

}
. (8)
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Both Eq. (6) and Eq. (8) were rederived by us along a different line and we confirm
their correctness.

In Fig. 1 we present the 1D and 3D form factors of survival of the atom
in its initial state after the action of HCP. Because of a complex character of
the form factors, there are shown their real and imaginary parts, separately,
versus the scaled momentum transfer. The 3D form factors have been calcu-
lated for the extreme blue Stark states (|n, n1, n2, |m|〉 = |10, 9, 0, 0〉, |30, 29, 0, 0〉
and |80, 79, 0, 0〉, respectively), for which the 1D approximation is expected to be
valid (see Table). The results for the extreme red Stark states (|n, n1, n2, |m|〉 =
|10, 0, 9, 0〉, |30, 0, 29, 0〉) and |80, 0, 79, 0〉) are exactly the same. As seen from
Fig. 1, the agreement between the 1D and 3D calculations is very good at low
q, but some discrepancies appear with increasing q if n is not reasonably large.
However, these discrepancies vanish for increasing n, as seen from the middle and
bottom rows of Fig. 1. As seen from Fig. 2, the 1D approximation (working well
for the extreme Stark states) completely loses its validity in the case of the middle
states from the Stark manifold.

Fig. 1. Real (left) and imaginary (right) parts of the diagonal form factors of survival

of the atom in its initial state versus the scaled momentum transferred to the atom.

Solid line — the 1D approximation, dashed line — the full 3D results. The 3D calcu-

lations were performed for the extreme blue Stark states (|n, n1, n2, |m|〉 = |10, 9, 0, 0〉,
|30, 29, 0, 0〉, and |80, 79, 0, 0〉).



One-Dimensional versus Three-Dimensional Approaches . . . 45

Fig. 2. As in Fig. 1 but for intermediate Stark states of a given n-manifold. Solid line

— the 1D approximation, dashed line — the full 3D results.

Using the form factors (Eq. (6) and Eq. (8)) we can determine the free
evolution of the wave packet after its excitation by HCP from the initial state |n〉;

|Ψ(t)〉 =
∑

e−iEn′ tTn′,n |n〉 , (9)
as well as the evolution of any expectation value for this wave packet. Specifically,
we have investigated the evolution of the expectation value of position x in both the
1D and 3D approaches. This expectation value is defined as 〈x〉 = 〈Ψ(t)|x|Ψ(t)〉 =∑

jj′ Tj′iTjixj′jeiωt (see [10]), where the matrix element xj′j is taken between two
Rydberg states. These matrix elements can, formally, be obtained by calculating

xfi = −i lim
q→0

∂Tfi

∂q
. (10)

With the use of Eqs. (6) and (8), respectively, the 1D approximation gives

xii = 〈n|x|n〉 =
3
2
(n)2 (11)

for the diagonal elements and

xfi = 〈n′|x|n〉 = (−1)n 8
√

nn′(nn′)2

(n′ − n′′)4

(
n′ − n

n′ + n

)n+n′

×
{

2nn′ − n− n′

n + n′
F [1− n, 1− n′, 2, z(y = 0)]

+
2nn′

(n− n′)2
(n− 1)(n′ − 1)F [2− n, 2− n′, 3, z(y = 0)]

}
(12)
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for the off-diagonal elements [11]. In the 3D case we get [12]

xfi = −2(−1)n′1+n′2
1

4(|m|!)2

√
(n1 + |m|)!(n′1 + |m|)!(n2 + |m|)!(n′2 + |m|)!

n1!n′1!n2!n′2!

×
(

4nn′

(n− n′)2

)|m|+2 (
n− n′

n + n′

)n+n′ {2nn′(n1 − n2) + (n′2 − n′1)(n
2 + n′2)

(n + n′)2

×F [−n1,−n′1, |m|+ 1, z(y = 0)] F [−n2,−n′2, |m|+ 1, z(y = 0)]

+n′1F [−n1,−n′1 + 1, |m|+ 1, z(y = 0)] F [−n2,−n′2, |m|+ 1, z(y = 0)]

−n′2F [−n1,−n′1, |m|+ 1, z(y = 0)] F [−n2,−n′2 + 1, |m|+ 1, z(y = 0)]

}
. (13)

Applying the above formulae we have calculated the expectation value of x for
the Rydberg wave packet generated by a HCP (q = 1.55 × 10−3 a.u.) from the
initial blue state of n = 25 (n1 = 24, n2 = 0). This HCP redistributes the initial
population over, mainly, the blue Stark states with 22 ≤ n ≤ 28. The results are
presented in Fig. 3, where we can see perfect agreement between the 1D and 3D
approaches.

Fig. 3. Expectation value of the x coordinate for a Rydberg wave packet as a function

of time of free evolution. The wave packet was created by a HCP (q = 1.55× 10−3 a.u.)

redistributing the initial population from the blue Stark state of n = 25 to the manifold

of seven blue Stark states with 22 ≤ n ≤ 28. Dashed line — the 1D results, solid line

— the 3D results.

Using the 1D approach we have, finally, calculated the evolution of local-
ization of the wave packet by plotting squared modulus of Eq. (9) for different
t. Since |n〉 is a polynomial of a finite order, the population should, for any t,
oscillate along the x axis, in general. For selected times of free evolution, Fig. 4
shows the distribution of population along the x axis, obtained by the 1D and
3D approaches, for the wave packet consisting of the band of states 39 ≤ n ≤ 65,
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Fig. 4. The distribution along the x-axis for the freely evolving 1D (left column) and

3D (right column) wave packets produced by applying a HCP of q = −0.001 a.u. to

the n = 50 state. t/Tn is the time of the evolution in units of the Kepler period for the

initial state. On the vertical axis, the value of the squared modulus of the packet’s wave

function is given.
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excited from the initial state |n〉 = 50 by HCP of q = −0.001. With the use of
Eq. (4) and the Fourier transform of Eq. (5) we also show in Fig. 5 the distribu-
tion in momentum space for the same wave packet. The agreement between the
1D and 3D results is very good as far as the shape is concerned, and different

Fig. 5. The momentum distribution versus time of free evolution for the wave packet

from Fig. 4 (left column — 1D results, right column — 3D results). On the vertical

axis, the value of the squared modulus of the packet’s wave function is given.
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heights of the 1D and 3D figures are caused by some spreading of the 3D wave
function along other additional axis. The above choice of parameters is intentional
in order to compare the present results with our recent ones [11] obtained along
a different line, i.e., by calculating the position-momentum uncertainty product
and the Husimi phase-space distribution function for the wave packet produced.
For the specific times chosen, namely t/Tn = 2.96 and 21.24 (Tn — the Kepler
period of the initial |n〉 = 50 state) both the calculated uncertainty product and
the Husimi function have suggested the best localization of the wave packet in the
phase space. In contrary, for t/Tn = 29.91 we have found in [11] the maximum de-
localization of the wave packet in the phase space. The results of Fig. 4 and Fig. 5
confirm our previous results obtained by more sophisticated methods. To have a
reference point, we have also included in Fig. 4 and Fig. 5 the results obtained for
the initial state |n〉 = 50 and also for the wave packet just after its production,
i.e., at t/Tn = 0. Finally, we would like to stress that the two times of the best
localization (t/Tn = 2.96 and 21.24) are separated by the so-called revival time
for the wave packet, i.e., by n/3 ≈ 17 in units of Tn.

4. Summary

All the results presented demonstrate that the real 3D Rydberg atom in its
extreme Stark states of high n À 1 can be well approximated by its 1D counterpart.
The 1D approach is simpler and more convenient in use and, when justified, offers
results practically indistinguishable from the exact 3D ones.
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