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The properties of a system of coexisting local pairs and itinerant elec-

trons described by the (hard-core) boson–fermion model are discussed. For

the first time we include into analysis of the model not only the supercon-

ducting and non-ordered (normal) states but also the charge density wave

phases as well as the so-called charge Kondo state. Within an extended

mean-field approximation, a mutual stability of charge density wave, super-

conducting and charge Kondo states are determined at T = 0 in the case of

half-filled fermionic and bosonic bands.
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1. Introduction

The purpose of the present paper is analysis of the phase diagrams and elec-
tron orderings of a system of coexisting local electron pairs and itinerant electrons
described by the (hard-core) boson–fermion model. The Hamiltonian of itinerant
c electrons and the d electrons creating local pairs (LP) has the form
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The model takes into account both the intersubsystem charge coupling I0 as well
as the density–density interaction V0, nc

i = nc
i↑+nc

i↓, nd
i = nd

i↑+nd
i↓, a total num-

ber of particles per site is n = nc +nd = (
∑

i 〈nc
i 〉+

∑
i 〈nd

i 〉)/N . ∆0−D measures
the relative position of the LP level with respect to the bottom of c-electron band,
2D = 2zt is the band width of c-electron band in the absence of interactions, z

is the number of nearest neighbours (nn). The Hamiltonian (1) is defined in the
subspace excluding single occupancy of sites by d electrons. In this subspace the
charge operators {ρid}, defined by ρ+

id = d+
i↑d

+
i↓ = (ρ−id)

+, ρz
id = 1

2 (nid − 1), obey
the Pauli spin 1

2 commutation relations and the following relations are fulfilled:
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Up to now the studies of the model have been concentrated on the superconducting
(SC) and non-ordered (normal) phases [1–5]. We extend the previous investiga-
tion and include into the analysis the charge density wave (CDW) phases as well
as the so-called charge Kondo state (CKS). The CKS being an analogue of the
magnetic Kondo state in the systems of the periodic Kondo lattice is character-
ized by a compensation of a local charge moment (isospin singlet) [1, 4–6]. One
finds that such a state can be realized in the present model if the intersubsystem
charge exchange interaction is increased, and it can compete with SC and CDW
orderings.

We have performed a detailed analysis of the phase diagrams and thermo-
dynamic properties of the model (1) for d-dimensional hypercubic lattices and
arbitrary, positive and negative I0 and V0 [6]. In the analysis we have used an
extended mean-field approximation (MFA-HFA), analogous to that used in the
treatment of the Kondo lattice model [7, 8]. Below we only quote the main results
of this investigation, concentrating on the case of half-filled bands: nc = nd = 1
which is realized for n = 2 and ∆0 = 0. We will restrict our analysis to the pure
phases and assume rectangular density of states (DOS) for c-electron band.

Definitions of the phases considered and the corresponding order parameters
are the following:
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2. Results and discussion

For n = 2 and ∆0 = 0 one finds that the chemical potential µ = V0/2 and
nc = nd = 1 for any T . In such a case the ground state diagram of the model
(1), taking into account only pure phases and calculated for rectangular DOS, is
plotted in Fig. 1.

In Figs. 2–4 we present the evolution of the order parameters and the quasi-
particle gap in the excitation spectrum Eg at T = 0 with increasing interactions.
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Fig. 1. Ground state phase diagram of the model (1) at half-filling plotted as a function

of I0/2D and V0/2D, for n = 2, ∆0/2D = 0, nc = nd = 1, for rectangular DOS.

Fig. 2. Variation of the SC and CKS order parameters and the quasiparticle gap at

T = 0 as a function of I0/2D for n = 2, ∆0/2D = 0, V0/2D = 0.
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Fig. 3. Variation of the CDW order parameter ρz
Q and nQ and the quasiparticle gap

ECDW
g /2D at T = 0 as a function of V0/2D for n = 2, ∆0/2D = 0, I0/2D = 0.

Fig. 4. Variation of the SC, CDW and CKS order parameters and the quasiparticle

gaps at T = 0 as a function of V0/2D for n = 2, ∆0/2D = 0, I0/2D = 0.07.
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3. Summary

Let us shortly summarize our main findings.

1. For small values of I0/2D and V0/2D the ground state is SC, if |I0| > |V0|
and CDW if |I0| < |V0|, for both signs of I0 and V0 (cf. Fig. 1).

2. For |I0| > |V0| and T = 0, with increasing |I0|/2D the system exhibits a
transition from SC to CKS state at (|I0|/2D)c (cf. Figs. 1 and 2). The
value of (|I0|/2D)c depends on the lattice structure of the system and the
strength of V0: repulsive V0 (V0 > 0) reduces this critical value whereas
attractive V0 (V0 < 0) enhances it.

3. For |I0| < |V0| and T = 0 the system remains in the CDW state for any
|V0|/2D, if V0 < 0, whereas for repulsive V0 (V0 > 0) the increase in |I0|/2D

yields a transition CDW → CKS, and the critical value (|I0|/2D)c slowly
decreases with increasing V0/2D (cf. Fig. 1).

4. The phases CDW and CKS are nonmetallic and at the borders of these phases
with SC the system exhibits the nonmetal–superconductor transition.

5. The CDW ordering is stabilized by the intersubsystem density interaction
V0 (both the repulsive and attractive one). It involves spatial modulation
of charge in both subsystems and the order parameters ρz

Q and nQ have the
same signs for V0 < 0 and the opposite signs for V0 > 0, which maximizes
(minimizes) the total amplitude of charge modulation for V0 < 0 (V0 > 0)
(cf. Fig. 3) and we call the CDW phases realized for V0 < 0 and V0 > 0 as
CDW I and CDW II, respectively.

6. The plots of CDW order parameters and the gap in the c-electron spectrum
at T = 0 as a function of |V0|/2D for |I0|/2D = 0 are shown in Fig. 2.

7. With increasing V0/2D (−∞ < V0/2D < ∞) for a fixed value of I0/2D the
system can exhibit the following sequences of transitions: CDW I → SS →
CDW II → CKS, if 0 < I0/2D < (I0/2D)c, and CDW I → SS → CKS, if
I0/2D > (I0/2D)c.

At present we study the case of arbitrary particle concentrations and include
into consideration the mixed ordered phases. Our preliminary results clearly indi-
cate that the deviation from the half-filling (i.e. from nc = nd = 1) with a change
of n or/and ∆0 can strongly extend the range of stability of SC phase with respect
to other phases.
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