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The De Gennes and Matricon problem of finding the spectrum of os-

cillations of massive vortex line under the action of pinning and viscosity

forces is solved. The obtained vibration spectrum of the vortex is discussed

and the role of each contributing force is elucidated. The trajectory of the

vortex motion is calculated and illustrated.
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1. Introduction

The problem of vortex dynamics in type-II superconductors is one of the
most intensively studied since its discovery by Abrikosov in 1957. Seven years
later in 1964 De Gennes and Matricon published an article [1], in which Abrikosov
vortex dynamics was considered. In the case of very small induction B/Φ0 ¿ λ2

one can neglect exponentially small interactions between vortices and consider
single vortex dynamics [4]. Here by Φ0 we denote the flux quantum and by λ the
London penetration depth. The authors of Ref. [1] considered two forces acting
on a massless vortex, namely line tension F str and Magnus force F L (which is
very similar to the Lorentz force acting on charged particle, when flux quantum is
considered as a charge). In such case the following equation for the single vortex
was written:

F L + F str = 0. (1)
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As a result the quadratic dispersion relation that starts from ω(k)|k=0 = 0 was
obtained. This problem was also studied in several other articles [3, 4].

In the present work we consider single Abrikosov vortex line under the action
of these forces accompanied by pinning force F p, and viscosity force F V and
additionally we take into account effective mass per unit length of the vortex. The
problem changes now significantly, as is seen from dispersion relations and other
results presented below.

In these conditions we can describe the motion of the vortex line by a Newton
equation [2, 5–9]:

F L + F str + F p + F V = m
dV

dt
. (2)

Now we can find dispersion relations for a vortex motion and trajectory of this
motion. It is also interesting to compare these results with the results obtained
by De Gennes and Matricon.

In Ref. [1], the line tension F str and the Magnus force F L were written in
the following form:

F str = J
∂2s

∂z2
, (3)

F L = {αVy,−αVx, 0}, (4)

where α = m∗Φ0/µ0λ
2e, J = Φ2

0
4πµ0λ2 ln

(
λ
ξ

)
, m∗ — effective electronic mass,

e — elementary charge, µ0 = 4π × 10−7 H/m, Φ0 — flux quantum, λ — Lon-
don penetration depth, and ξ — the coherence length. In our consideration the
pinning force is a quasi-elastic restoring force [10], which is proportional to the
displacement vector, s. The viscosity force is a dissipative force, which is a linear
function of the vortex segment velocity [11, 12]:

F p = −βs, (5)

F V = −ηV , η =
1
2
Bc2σ. (6)

In Eq. (6) Bc2 is the upper critical field and σ — the conductivity in normal state.
In the case of NbTi alloy we obtain [10, 13] α = 3.69 × 10−7 kg

m s , β = 0.1 kg
m s2 ,

η = 3.56× 10−7 kg
m s , J = 3.85× 10−11 kg m

s2 and m = 1× 10−18 kg
m [14–18].

2. Dispersion relations

Let us now consider a single Abrikosov vortex line with effective mass per
unit length — m, under the action of the forces, which we discussed above

J ∂2sx

∂z2 + α
∂sy

∂t − η ∂sx

∂t − βsx = m∂2sx

∂t2

J
∂2sy

∂z2 − α∂sx

∂t − η
∂sy

∂t − βsy = m
∂2sy

∂t2



 . (7)

Putting sx = Aei(kz+ωt) and sy = Bei(kz+ωt) into Eq. (7), we obtain the following
dispersion relation [19]:
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ω(1,2) = α−iη
2m

(
−1±

√
1 + Jk2+β

(α−iη)2 m
)

ω(3,4) = α+iη
2m

(
1±

√
1 + Jk2+β

(α+iη)2 m
)





. (8)

Taking into account that our considerations are correct for k ¿ 109 m−1

and assuming the above calculated values of J,m, α, β, and η, we can expand this

expression into a series by a small dimensionless parameter
∣∣∣ Jk2+β
(α±iη)2 m

∣∣∣ ¿ 1. In

this case, we obtain the following two spectrum branches:

ω1 ≈ α(Jk2 + β)
α2 + η2

− (Jk2 + β)2m(α3 − 3αη2)
(α2 + η2)3

+i
[
η(Jk2 + β)

α2 + η2
− (Jk2 + β)2m(3α2η − η3)

(α2 + η2)3

]
,

ω2 ≈ α

m
+

α(Jk2 + β)
α2 + η2

− (Jk2 + β)2m(α3 − 3αη2)
(α2 + η2)3

+i
[

η

m
− η(Jk2 + β)

α2 + η2
+

(Jk2 + β)2m(3α2η − η3)
(α2 + η2)3

]
.

The plots of ω′1(k) = Reω1(k), ω′2(k) = Reω2(k), γ1(k) = Imω1(k), and
γ2(k) = Imω2(k), calculated for different values of η and β, are shown in Fig. 1

Fig. 1. The influence of the pinning force: (a) on the real part and (b) on the imaginary

part of the low frequency oscillation spectrum; (c) on the real part and (d) on the

imaginary part of high frequency oscillation spectrum.
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Fig. 2. The influence of the viscosity force (a) on the real part and (b) on the imaginary

part of the low frequency branch.

and in Fig. 2. In these figures one can see that the presence of the pinning force
leads to the activation type of the spectrum. If we assume all the parameters
introduced by us to be equal to zero, the low frequency branch of our spectrum
becomes identical to that obtained by De Gennes and Matricon [1].

3. Trajectory of vortex motion

Except for studying the dispersion relations, it is also interesting to solve the
dynamics’ equations of a single vortex. These equations determine displacements
of the vortex segments in time as well as a trajectory of the vortex line motion. It
is clear that the motion of our vortex is a damped oscillation, which appears either
due to initial displacement of the vortex segment from its equilibrium position or
due to initial velocity of this segment.

Let us now consider the simplest case k = 0. The tension of the vortex line,
F str, is absent in this case. We can obtain the equations of the vortex motion.
However, even in this case we cannot obtain any analytical expression for the
vortex trajectory. Nevertheless, we can obtain it numerically.

Fig. 3. Trajectory of the vortex line under the influence of the pinning, Lorentz and

the viscosity force, for k = 0. The initial position of the vortex was assumed to be x = a

and y = 0. The initial vortex velocity was assumed to be Vx = Vy = 0.
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It is impossible to illustrate the vortex motion in one figure, because there
are two different oscillation modes and every oscillation mode is noticeable at
its own time interval. The high frequency mode is also very quickly damped
(γ2 ≈ 1010 s−1). Due to very large differences in frequencies (ω1 ≈ 103 Hz and
ω2 ≈ 1011 Hz) and in amplitudes of these modes, we have imaged the trajectory
of the vortex motion in a special picture (see Fig. 3). In the main picture, we
illustrated trajectory of vortex motion during t2 = 6 × 10−11 s, which is of an
order of 2π/ω1. In the inset to Fig. 3 we imaged the vortex line motion during
t1 = 5× 10−5 s, which is of an order of 2π/ω2.

4. Conclusion

We have investigated oscillations of a single vortex line, taking into account
its dynamical equation, the pinning force, the viscosity forces, and the effective
mass of vortex line per unit length. Dispersion relations for such an undulating
movement were obtained and analyzed. We have studied the influence of each
force on the dispersion relations and on the dynamical characteristics of the vortex
motion. The role of the non-zero mass of the vortex was also investigated. It was
shown that the insertion of the effective mass into the motion equation leads to
an appearance of the second spectrum branch. The trajectory of vortex motion,
in the simplest case of k = 0, was found.
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