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Superconducting properties of small metallic grains modelled by highly

degenerate two-level spectrum have been studied. We have solved numer-

ically Richardson’s exact equations for the system of 2N electrons in two

levels. Characterising the size of the grain by the level degeneracy we study

the finite size corrections to the thermodynamic limit of the ground and low-

est excited state energy. The interparticle distance ∝ N−1/3 seems to be the

expansion parameter. The obtained results have been compared with those

of other authors.
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1. Introduction

The properties of materials at nanoscale differ from their equivalents in the
bulk. This is due to the discrete energy spectrum, parity effects, and large surface
to volume ratio. The characteristics depend on the size of the grain which may be
quantified by the total number of particles in it [1–3].

We consider a small system with two highly degenerate energy levels close to
the Fermi energy with 2N electrons interacting by the weak attractive potential.
We model it by the following Hamiltonian:

H =
∑

f,σ=±
εfc+

fσcfσ − g
∑

f,f ′∈S

c+
f+c+

f−cf ′−cf ′+, (1)

where (fσ) denotes the single particle quantum numbers, εf = ε1, ε2 — the single
electron energy levels with ε2 − ε1 = h and g is the positive coupling constant,
c+
fσ, cfσ are fermion creation and annihilation operators. The degeneracy of each

level is assumed to be the same and equal N .

2. Theory and results

Richardson and Sherman [4] have shown that eigenproblem defined by this
Hamiltonian can be solved exactly. For ε1(2) = ∓ε the solution reduces to (N + 1)

(569)
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algebraic equations

(ωµ − E)ϕ(µ)−Aµϕ(µ + 2)−Bµϕ(µ− 2) = 0, (2)
where E is the total energy of the system, ϕ(µ) — its eigenfunction,

ωµ = 2µε− 1
2
g [N(Ω1 + Ω2 −N + 2) + µ(Ω2 − Ω1 − µ)] , (3)

Aµ = 1
4
g [N(2Ω2 −N) + µ(µ− 2Ω2)] , (4)

Bµ = 1
4
g [N(2Ω1 −N) + µ(µ + 2Ω1)] . (5)

The argument µ = N2−N1 (µ = −N,−N +2+ · · · , N) of the function is the
difference between the number of pairs in upper and lower energy level. Solving
these equations one obtains (N + 1) roots for the energy E and the corresponding
wave functions ϕ(µ). The lowest of the roots is the ground state energy of the
system, the others are excited states. There exist also pair-breaking excitations,
which are obtained by breaking the N ′ pairs and placing non-interacting 2N ′

electrons on the two levels [3].
For the numerical purposes we assume no unpaired electrons in the ground

state of (1), replace [5, 6] g with g/2N and take ε = h/2.
We focus first on the ground state energy EGS. Richardson [5] showed that

in the regime h/g < 1

e =
EGS

2N
= − 1

4g
(h2 + g2) +

1
4N

(∆− 2g)− 1
16N2

g(3g −∆)(g −∆)
∆2

+ · · · ,(6)

where the BCS gap ∆ =
√

g2 − h2.
The first term in (6) is the thermodynamic limit of the ground state energy.

It agrees with the BCS value. Other terms are the first and the second-order
corrections, respectively.

The regime h/g > 1 was studied in a recent paper [6] where continuous
unitary transformation technique has been used to find the function e(N) of the
same model. For g = 1, h > 1 it reads

e = −h

2
+

1
2N

(
−h +

√
h(h− 1)

)

+
1

4N2

(
− 2h− 1

2(h− 1)
− h√

h(h− 1)

)
+ · · · . (7)

At the critical point h = 1 they have found

e(N) = −1
2
− 1

2N
+

1
(2N)4/3

+ · · · . (8)

It turns out that the solution of Eqs. (2–5) covers both regimes. In Fig. 1a
we show e(N) for h/g = 1 and the function e(h/g)/g for fixed N in Fig. 1b. It is
continuous at the point h = 1 (g = 1) and coincides with Eq. (6) in the regime
h < 1 and Eqs. (7, 8) for h > 1. The thermodynamic limit of the ground state is
e(N →∞) = −(h2 + g2)/4g for h/g < 1 and e(N →∞) = −h/2 for h ≥ 1, g = 1.
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Fig. 1. The ground state energy per electron e = EGS/2N in units of g as a function

of the number of electrons n = 2N for h = g = 1 (a) and h/g for n = 2000 (b). Our

results (solid lines) are compared with those of [5] (dashed line — R) and [6] (dotted

lines — DV ). The insets show respective data on an expanded scales.

Now, we consider the lowest excited states EI, which preserve the total num-
ber of pairs N . The difference E

(1)
ex = EI − EGS is proportional to the BCS order

parameter ∆ in the thermodynamic limit. Richardson [5] has found in the regime
h/g < 1, h = 1

E(1)
ex = ∆− g

N∆2
(1 + 2g2 − 2g∆) + · · · . (9)

On the other hand, in the regime h ≥ 1, g = 1 it has been found [6] that

E(1)
ex =

α

(2N)1/3
+ · · · , for h = 1 (10)

and

E(1)
ex = 2

√
h(h− 1) +

1
2N

(
4h− 1
h− 1

− 2
h√

h(h− 1)

)
+ · · · , for h > 1. (11)

These approximate results are compared with our numerical calculations in
Fig. 2. It is worth noting that the excitation energies have different behaviors in

Fig. 2. Dependence of the first excitation energy on h/g for fixed N = 2000. The inset

shows the comparison with analytical results near the point g = h = 1.
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two regimes of interest h/g < 1 and h/g > 1. The position of the kink slightly
depends on n and moves towards the point g/h = 1 for n →∞.

3. Conclusions

We have numerically solved Richardson’s equations for a two-level BCS
model with even number of electrons n = 2N and found the ground state EGS and
excitation E

(1)
ex energies. There are two regimes of the model h/g < 1 and h/g > 1

marked by the kink of the excitation energy. The calculated ground state energy
is continuous at this point. The approximate expressions obtained analytically by
Richardson [5] and Dusuel, Vidal [6] by different methods agree remarkably well
with our exact results in appropriate limits. The detailed dependence of states
and excited energies on N will be a subject of future studies.
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