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Recently a new universal relation between superfluid density ρs and

σdcTc, where σdc is direct current conductivity and Tc — superconducting

critical temperature, was found by Homes et al. (Nature 430, 539 (2004)).

The theoretical derivation of the relation based on BCS theory is correct only

qualitatively. In the present paper this relation is calculated theoretically,

using Hartree-Fock approximation and second-order perturbation theory. It

is found that although correct qualitatively, quantitatively the results are

too small. Inclusion of the second neighbor hopping improves the results.

PACS numbers: 74.25.Fy, 71.10.Fd, 74.20.Fg, 71.27.+a, 72.10.–d

1. Introduction
The search for some universal properties of superconducting materials is

among many approaches to reveal the mechanisms of high-temperature super-
conductivity (HTS). One of the earliest universal properties found is so-called
Uemura relation [1], a linear scaling between the superfluid density ρs (∝ 1/λ2,
where λ is a penetration depth) and superconducting transition temperature Tc —
valid mostly for underdoped, hole-doped materials. Recently another relation was
found by Homes et al. [2] — proportionality between ρs and the product Tcσdc(Tc),
where σdc(Tc) is normal state direct current conductivity in temperatures T ≥ Tc.
It is valid among many HTS materials, irrespectively of doping level, doping type
(hole-doped or electron-doped), lattice dimensionality; it is also valid for the two
BCS superconducting elements Nb and Pb.

The relation was suggested to be connected with the dirty-limit conductiv-
ity [3] but it might also be an effect of several different phenomena instead of
the universal one, e.g. Josephson-coupling, marginal Fermi-liquid or d-wave pair
breaking apart from dirty-limit superconductivity [4].

The theoretical calculations shown in Ref. [3] were based on optical conduc-
tivity results in BCS model [5]. The fit of the relation in Ref. [3] was qualitatively
correct, although of about twice too large slope in the linear part. The Nb and
Pb were falling on the theoretical line but the HTS materials were not.
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Reference [6] tries to go one step beyond BCS calculations. While super-
conducting properties are still calculated in the Hartree approximation to the
negative-U Hubbard model, the self-energy in the second-order perturbation the-
ory is included into the calculations of σdc. The limit of infinite dimensions was
taken, to suppress vertex corrections and simplify calculations. The resulting
curve was qualitatively correct but in this case the slope of the universal part was
about twice too small compared to the experimental results (hopping t∗ = 0.25 eV
and a = 4 Å were taken). The present paper extends the analysis of Ref. [6] by
considering the effect of next-nearest neighbor hopping.

2. The method

The Hamiltonian of the system is negative-U Hubbard model:

H =
∑

¿ijÀσ

(−tij − µδij)(c
†
iσcjσ + h.c.) + U

∑

i

ni↑ni↓, (1)

where ¿ ij À means summation over nearest- (nn) and next-nearest neighbors
(nnn), tij = t1 for nn and tij = t2 for nnn are the hopping integrals, U = −|U |
and µ is a chemical potential. In the reciprocal space the kinetic energy takes the
following form:

εk = −2t1

d∑
n=1

∑

k

cos kn − 4t2√
d− 1

d∑
n=2

n−1∑
m=1

cos kn cos km. (2)

In d = ∞ we must use rescaled hopping t∗ = t/
√

2d. The t∗ unit will be used
hereafter. The density of states is given by [7]:

ρ0(ε) =

√
2
π

1
E

exp
(

1− E2

4a2

)
cosh

E

2a2
, (3)

where E(ε) =
√

1 + 2a2 − 2
√

2ae and a ≡ t2/t1. In infinite dimensions the Green
functions and the self-energy depend on the wave vector only by εk, so we use
Brullouin-zone-averaged Green functions Gloc(ω) = 〈Gk(ω)〉k [8]. Density of the
single particle excitations is given by:

ρ(ω) = − 1
π

ImGloc(ω + i0+) =
∫ ∞

−∞
dερ0(ε)A(ε, ω), (4)

where A(ε, ω′) is a standard spectral function of the interacting Green function:

A(ε, ω) = − 1
π

Im
1

ω − ε + µ− Σ (ω + i0+)
. (5)

The first order self-energy Σ1 = Un/2 is renormalizing the chemical potential
µ = µ− Σ1. The Σ in Eq. (5) is a second-order self-energy correction, given by a
single electron bubble:

Σ (iωn) = −U2

∫ ∫ ∫
dξ1dξ2dξ3ρ(ξ1)ρ(ξ2)ρ(ξ3)

×f1f2(1− f3) + (1− f1)(1− f2)f3

iωn − ξ1 − ξ2 + ξ3
, (6)
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where fn ≡ f(ξn)’s are Fermi occupation factors and ρ(ξ) is given by Eq. (4).
We iterate Eqs. (4), (5), and (6) until convergence, updating chemical potential
µ → µ + Σ (ω = 0) at every step of iteration to fulfill Luttinger theorem [7]. The
calculations were done keeping µ = 0, which corresponds to the half-filled band
for nn hopping (a = 0) and to n close to the half-filled band for a 6= 0.

The conductivity is given by current–current correlation function, which in
d = ∞ takes the simplified form [9]:

σ(ω, T ) =
∫

dω′
∫

dερ0(ε)A(ε, ω′)A(ε, ω′ + ω)
f(ω′)− f(ω′ + ω)

ω
. (7)

Direct current conductivity is given by the ω → 0 limit of Eq. (7).
The properties of the superconducting state are calculated in the Hartree–

Fock approximation, by solving the following equations:

− 1
U

=
∫

ρ0(ε)
1

2E
tanh(βE/2)dε, (8)

n− 1 = −2
∫

ρ0(ε)
ε− µ

2E
tanh(βE/2)dε. (9)

where β = 1/kBT, E =
√

(ε− µ)2 + ∆2. Limit ∆ → 0 yields the critical temper-
ature Tc.

Superfluid density is given by ρs = −Kdia/4π2, where Kdia is small q limit
of the Fourier transform of the diamagnetic part of the kernel of linear current
response to the external, transverse electromagnetic field; in the ground state:

−Kdia =
∫

ρ0(ε)
ε(ε− µ)

E
dε. (10)

3. Results

In order to compare the results with Ref. [2], the quantities on both axes
in Fig. 1 are given in cm−2. Average values of parameters met in HTS materials
were used: lattice constant — 4 Å, t∗1 = 0.25 eV and a = t∗2/t∗1 = −0.45 (like
in YBCO). Let us note that by definition both ρs and σ are proportional to the
kinetic energy per bond, so they vanish in the d → 0 limit; thus in fact we calculate
the first correction in 1/d expansion: dρ and dσ.

We can see that performing the calculations in the way described in the
present paper and in Ref. [6] underestimates the proportionality constant between
ρs and σdcTc. It is to be compared with the results of pure BCS approach (shown
in the inset), which overestimate it. Including nnn hopping of the opposite sign
to t1 improves the situation but only slightly. The largest increase in ρs in respect
to the case of nn hopping only appears at a nonuniversal part of the curve. The
most interesting universal part is connected with large U , where the corrections
coming from t2 diminish. Including 2nd order perturbation theory to calculate
the properties of superconducting state as well as using Tc from Monte Carlo
calculations did not change the situation qualitatively [6]. Further calculations,
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Fig. 1. Superfluid density dρs vs. dσdcTc for nn hopping only (a = 0, lower curve [6])

and for a = −0.45 (upper curve). In the inset the enlargement of the area near the axes

origin with two curves added: dρs = 35dσdcTc (dotted line — HTS materials [2]) and

dρs = 65dσdcTc (dot-dashed line — BCS theory [2]).

treating both the normal and superconducting states on equal footing are needed.
Dynamical mean field theory (DMFT) calculations are in preparation.
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