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We summarize briefly our recent work on the bound states of two elec-

trons (Cooper pairs) in two nonstandard situations: when the quasiparticle

masses depend on spin and when an electron pair is localized on a two-

-dimensional quantum dot and placed in an applied magnetic field. In both

cases we are dealing with an extension of the original Cooper approach. The

applicability of the results is briefly mentioned.

PACS numbers: 74.20.–z, 74.25.Jb, 71.10.–w

1. Introduction

The concept of Cooper pair of electrons [1] was a starting point of the
Bardeen, Cooper, and Schrieffer (BCS) theory of superconductivity [2], as the
binding is mediated by coupling to the lattice which overcomes the repulsive
Coulomb interaction between them. In recent years, this mechanism of pairing is
being questioned for high-temperature and heavy-fermion superconductors, where
a concept of real space pairing due to electron correlations induced by strong
(short-range part) of the repulsive interaction is regarded as instrumental in pro-
ducing the condensate of pairs [3]. Also, the binding of electrons into pairs on
meso- or nanoscales [4] provides an opportunity to detect individual Cooper pairs
in direct space, particularly in planar systems.

In this paper we summarize the recent effort of our group in studying elec-
tron pairs in various situations. Namely, we consider first a single pair in the spin-
-singlet configuration in a two-dimensional quantum dot (modelled by a two-
particle attractive potential well). We discuss also the binding of the pair in the
presence of an applied magnetic field. In the second part, we consider the Cooper
pair when the particle mass depends on its spin direction. This type of situation
appears in the correlated narrow band system close to the Mott–Hubbard local-
ization [5]. Both examples have been selected on the basis of our current interest
in these novel systems.
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2. Bound pair in a planar system

We consider first a system of two electrons in confining them planar attrac-
tive pairing energy

V (r) =

{
−V0 for r ≤ a,

0 for r > a,
(1)

where 2a is the spatial extension of the potential. Hamiltonian of such a two-
-dimensional system of two electrons placed in a uniform applied magnetic field
has the form

H =
1

2m

[
(−ih̄∇1 − eA1)2 + (−ih̄∇2 − eA2)2

]− (µ1 + µ2) ·B + V (r1, r2), (2)

where the indices 1 and 2 correspond to the coordinates of the electrons, respec-
tively. The quantity µ = 2µBs is the electron magnetic moment (with a minus
sign, so it has the spin direction). Eigenvalues of the total spin S = s1 + s2 are
S = 0, 1. Also, Sz = sz

1 + sz
2 = 0,±1, whereas m plays the role of the effective

mass if the system is immersed in a medium.
For the applied field oriented perpendicularly to the system plane, the rota-

tional symmetry of the problem allows for the choice of the symmetric gauge for
the vector potential A = (−y, x)B/2, where B is along the z-axis. Introducing
the center of mass and the relative coordinates, defined as{

R = r1+r2
2

r = r1 − r2

=⇒
{

r1 = R + r
2

r2 = R− r
2

, (3)

we separate Hamiltonian (2) into centered-mass and relative motion parts, which
in the polar coordinates R = (R,Φ) and r = (r, ϕ) read

H = − h̄2

2M

[
1
R

∂R(R∂R) +
1

R2
∂2
Φ

]
+

Mω2
c

8
R2 − ih̄ωc

2
∂Φ

− h̄2

2µ

[
1
r
∂r(r∂r) +

1
r2

∂2
φ

]
+

µω2
c

8
r2 − ih̄ωc

2
∂φ − 2µBBŜz + V (r), (4)

where M = m1 +m2 = 2m and µ = m1m2/(m1 +m2) = m/2 are respectively the
system and the reduced masses, and ωc = |e|B/m is the cyclotron frequency for a
single electron (in SI units).

2.1. Noninteracting pair: a summary

In the absence of the pairing potential the eigenvalues and eigenfunctions
take the form [6]:

(E0)
S,Sz

NLnl = h̄ωc (N + L + n + l − Sz + 1) , (5)

ΨS,Sz

NLnl(ζ,Φ, ξ, φ) =
1
2π

eiLΦeilφUNL(ζ)unl(ξ)χ(S, Sz) (6)

with

UNL(ζ) =
1

RH

√
N !(N + L)!

e−
ζ
2 ζ

L
2 LL

N (ζ), (7)
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and

unl(ξ) =
1

rH

√
n!(n + l)!

e−
ξ
2 ξ

l
2 Ll

n(ξ), (8)

where N, L and n, l characterize respectively the orbital (N, n) and angular-
-momentum (L, l) quantum numbers for the center-of-mass and the relative mo-
tion. The part χ(S, Sz) represents the spin part of the wave function. Finally, the
dimensionless coordinates have been defined

ζ =
R2

2R2
H

with R2
H =

h̄

Mωc
, and ξ =

r2

2r2
H

with r2
H =

h̄

µωc
. (9)

The parameters RH and rH are the cyclotron radii of the two parts: the
center of mass and that of orbiting one electron against the other.

A very important feature of the problem should be noted. Namely, the wave
function parity is defined by the factor (−1)l(−1)S+1. Due to the Pauli principle
the total wave function must have an odd parity. Let us note that the quantum
number L does not appear in the parity as the change r1 ↔ r2 does not affect R,
but it does change the sign of r. Also, for a noninteracting system the state with
l = 1 and Sz = 0 are degenerate with that having l = 0 and Sz = 1 (the lowest
singlet and triplet states, respectively).

2.2. Real-space bound Cooper pair for B 6= 0

One may think that, in direct analogy to the original Cooper situation [1],
an extension of the solution to the situation with V (r) 6= 0 requires taking into
account the following superposition of the previous wave functions:

ΦS,Sz

NLl (R,Φ, r, φ) =
∑

n

αnΨS,Sz

NLnl[ζ(R),Φ, ξ(r), φ]. (10)

However, this is not the case, as the Landau-type wave function does not
reflect properly the situation in the B → 0 limit (the cyclotron radii RH and rH

diverge then). This singularity, which is also present when considering Landau
orbits in the B → 0 for single electrons, makes the problem highly nontrivial.

We propose the following variational approach for calculating the ground-
-state energy for the spin-singlet state in an arbitrary field. Namely, the ground-
-state wave function is taken in the form

Ψ(r,R) =
1√
2πα

e−r2/α2 1√
2πη

e−R2/η2
, (11)

where α and η are the variational parameters. Substituting this wave function
into (4) and evaluating 〈Ψ |H|Ψ〉 we obtain the equation

E = E(α, η) =
Mω2

cη2

4
+

h̄2

4Mη2
+

µω2
cα2

4
+

h̄2

4µα2
− h̄ωcSz

−V0

(
1−e−a2/2α2

)
. (12)

Minimizing this equation with respect to η, we obtain ηmin = RH , as it should
be, since the center of mass motion is not influenced by the pairing interaction.
Substituting this result into (12) and defining the dimensionless variables
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β ≡ B

B0
, λ ≡ α

a
, and χ ≡ V0ma2

2h̄2 , (13)

with B0 ≡ mV0/h̄e, we arrive at

E(λ,RH)
V0

=
β

2
+

λ2

4
χβ2 +

1
4λ2χ

− (1− e−1/2λ2
). (14)

Minimizing this expression with respect to λ for different values of β and
fixed value of χ, we determine the pair binding energy defined as

∆̃S=0,Sz=0
L=0,l=0 = Emin(λ,RH)− (E0)L=0,l=0 (15)

for the spin-singlet state and, accordingly, for other states. In Fig. 1 we plot the
binding energy for the lowest solution taking χ = 10 and a = 100 Å, when thus
V0 = 15 meV and B0 = 130 T.

Fig. 1. Applied field dependence of pair binding energy for the spin singlet and triplet

pairs in a two-dimensional attractive potential well for the pair.

Repeating the same procedure for the spin-triplet (Sz = l = 1) state, we
have

Ψ(r,R,Φ) =
1√
2πη

e−R2/4η2 r

2
√

πα2
eiΦe

−r2/4α2

(16)

and correspondingly
E(λ,RH)

E0
=

λ2

2
χβ2 +

1
2λ2χ

−
[
1− e−1/2λ2

(
1 +

1
2λ2

)]
. (17)

The binding energy in this case ∆S=1,Sz=1
L=1,l=0 ≡ Emin(λ, η) − (E0)L=1,l=0 has

also been plotted in Fig. 1. As one can expect, the spin-triplet state becomes
stable in strong applied field.
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One feature of the solution should be mentioned. Namely, there exists a
critical value of χ, below which the bound state ceases the existence. This is
because of the confining potential existing only in the limited region of the size a,
since it produces zero-point kinetic energy of the pair. This critical value of the
potential is determined from the condition ∆ = 0.

2.3. Effect of the Coulomb repulsion on the pair binding

To examine the effect of the Coulomb repulsion we consider two types of the
interaction potential

1) Vrep = U
a

r
, 2) Vrep = Ua2δ(r). (18)

The first case with U ≡ e2/κa, where κ is the static dielectric constant, describes
the long-range nature of the interaction. The second case expresses a well screened
interaction.

Fig. 2. Effect of the Coulomb repulsion amplitude U on the pair binding energy. The

two forms of repulsive Coulomb interaction are specified.

To calculate the system energy in the present situation, we start from the
total wave function (11) with η = RH and minimize it with respect to α. First, in
Fig. 2 we plot the binding energy for the two cases and the corresponding states
when B = 0 (the center-of-mass part of the wave function is ignored then). The
spin-singlet state is stable for weak repulsive interaction. The combined effect of
the repulsive interaction and the applied field is shown in Fig. 3. The short-range
type interaction stabilizes always the spin-triplet cases, whereas for the long-range
potential it is stable above a threshold BC ∼ 0.3B0.
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Fig. 3. Applied field dependence of pair binding energy for the short-range (a) and

long-range (b) repulsive Coulomb interaction between electrons.

In conclusion, a singlet-triplet transition for the bound pair is possible in
a rather strong applied field even if the pairing potential is spin independent.
It would be interesting to see if there exists a type-II superconductor for which
BC < BC2. There are claims [7] that this happens in NaxCoO2 superconductor.

3. Cooper pair with spin-dependent masses

The spin-split masses for quasiparticles in the strongly correlated systems
have been predicted theoretically [5] and recently detected experimentally in the
heavy-fermion superconductor CeCoIn5 [8]. Here we consider a single pair with
the spin-dependent masses. This means that we start from the Hamiltonian

H = − h̄2

2m↑
∇2

1 −
h̄2

2m↓
∇2

2 + V (|r1 − r2|). (19)

We introduce the usual form of the spatial part of the wave function [1]:

Ψ(r1, r2) =
∑

k1k2

αk1k2

1
V

ei(k1·r1+k2·r2). (20)

Next, we introduce the center-of-mass and relative coordinates
{

R = m↑r1+m↓r2
m↑+m↓

r = r1 − r2

,

{
K = k1 + k2

k = k1m↓−k2m↑
m↑+m↓

. (21)

Let us note that the relative momentum is introduced in a nonstandard manner.
In the new representation the further calculations are standard, so we will write
down only the condition for the pair ground-state energy E which is
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1 =
1
V

∑

k

V0

h̄2k2

2µ − E
. (22)

The integration over k is nonstandard, as illustrated in Fig. 4. Namely, the interval
of nonzero pairing potential is contained between kF↓ ≤ k ≤ ka↑, where ka↑

Fig. 4. The range of integration over k for both spin directions σ =↓ and −σ =↓. For

details see main text.

determines the maximal momentum transfer due to phonons; we take it as kaσ =
kFσ + ∆k. Under this circumstance, Eq. (22) reads

1 =
V0

2π

∫ ka↑

kF↓
dk

k2

h̄2k2

2µ − E
. (23)

As the integration integral is narrow, we make an approximation k2 ≈ kFk, with
kF ≡ (kF↑+kF↓)/2. In effect, the expression for the binding energy can be brought
up to the closed form [9]:

∆ =
1

exp
(

2π2h̄2

µkFV0

)
− 1

{
m↑
µ

h̄ωD −∆mεF

[
1

m↓
+

1
m↑

exp
(

2π2h̄2

µkFV0

)]}
, (24)

where h̄ωD is the typical phonon frequency, ∆m = m↓ −m↑, and εF is the Fermi
energy. This result reduces to the Cooper result [1] when ∆m = 0. The binding
energy decreases with the increasing ∆m.

In conclusion, in the situation with spin masses the relative wave vector is
defined differently. Also, the expression for the pair binding energy differs when
the triplet pairing takes place [10]. The details of this analysis will be presented
elsewhere.

4. Concluding remarks

The singlet Cooper-pair is destroyed by sufficiently strong applied field. This
is not the case for the spin-triplet Cooper pair. In the latter case, the spin-split
masses introduce inequivalence between the gap components ∆↑↑, ∆↓↓, and ∆↑↓,
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and a change of behavior of the spin-triplet superconductor or superfluid in an
applied magnetic field.
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