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Experimental results concerning persistent currents in small rings

threaded by a magnetic flux do not agree with theoretical predictions, es-

pecially for experiments performed in diffusive regime. This suggests im-

portant role of disorder in these experiments. In this paper we demonstrate

how impurities present in ring modify the persistent current by generating or

enhancing charge density waves. The electronic correlations are taken into

account for both repulsive as well as attractive electron–electron interaction.

The calculations are carried out for one-dimensional rings consisting of up

to 12 lattice sites using Lanczös exact diagonalization approach, and for

finite-width much larger rings using the Bogolyubov–de Gennes equations.

PACS numbers: 73.23.Ra, 74.78.–w

1. Introduction

Unusual properties of small (super)conducting systems have been predicted
many years ago. Most of them manifest itself at low temperatures and they orig-
inate from two aspects of the new quantum regime. First, the phase coherence
length of the electron is comparable to the system size, and therefore, the inter-
ference effects are important. Second, the spacing of energy levels can be larger
than kBT . One of the most surprising results is the presence of a nonzero equilib-
rium current that circulates when a normal-metal ring is threaded by a magnetic
flux Φ. At zero temperature, this current is carried by the ground-state itself,
therefore, it cannot decay. This effect was pointed out by Büttiker et al. [1] in
1983, and was extended by Büttiker [2]. It originates from the new boundary
conditions imposed by the magnetic flux [3]. As a result, the persistent current,
as well as all other thermodynamic properties of the system, are periodic with the
flux, with periodicity Φ0 = hc/e. In 1990 Lévy et al. have found experimental
evidence for this phenomenon [4]. The authors have investigated the magnetic
response of an assembly of 107 copper rings using standard SQUID magnetometry
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and found that only the event harmonics of the mean current do not average to
zero. The current that they measured is higher than the predicted one by more
than an order of magnitude. Similar results were recently obtained for an assem-
bly of 105 silver rings [5]. The first experiment on a single gold loop was done
by Chandrasekhar et al. in 1991 [6]. The measured current oscillates with the
period Φ0 and its amplitude is higher than the theoretical value by more than
2 orders of magnitude. Experiment was also carried out on a system consisting of
30 gold rings [7], indicating higher than theoretically predicted current with both
Φ0 and Φ0/2 components. All the above mentioned experiments were performed
on rings in diffusive regime. On the contrary, the amplitude of the persistent
current measured on nearly ballistic GaAs ring remains in agreement with the
theoretical prediction [8]. It suggests that disorder plays an important role in
these results. From theoretical point of view disorder should reduce the amplitude
of the current I = I0l/L, where I0 is the current in a perfect 1D ring, l is the
elastic mean free path and L is the perimeter of the loop. On the other hand, Am-
begaokar and Eckern showed that the electron–electron interactions may enhance
the current [9]. There exist many other theoretical attempts to explain the role of
both disorder and Coulomb correlations in the phenomenon of persistent current
in small metallic rings. Unfortunately, the results are still ambiguous.

In this article we study how disorder affects the properties of a small ring
with correlated electrons. However, in contradiction to many other approaches,
we do not average over realizations of the disorder. Instead, we separately analyze
different impurity configurations. The analyses are performed for repulsive, as well
as for attractive interacting electrons on 1D and finite-width rings.

2. One-dimensional ring

The starting point is a 1D ring with diagonal disorder described by the Hub-
bard Hamiltonian

H = −t
∑

〈i,j〉,σ
eiθij a†iσajσ +

∑

i

wi (ni↑ + ni↓) + U
∑

i

ni↑ni↓. (1)

Here, a†iσ (aiσ) creates (annihilates) an electron on site i with spin σ, U is the
on-site electron–electron interaction, niσ = a†iσaiσ, t is the nearest-neighbor hop-
ping integral in the absence of magnetic field (t > 0), and eiθij is the Peierls phase
factor that describes the orbital response of the system to an external magnetic
field

θij =
2π

Φ0

∫ Ri

Rj

A · dl. (2)

The second term on the right-hand side (RHS) of Eq. (1) describes the diago-
nal disorder present in the system, with wi being the potential of an impurity at
site i. The Hamiltonian (1) has exactly been diagonalized with the help of the
Lanczös algorithm. At zero temperature the flux-induced current I is calculated
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as I = −dE0/dΦ, where E0 is the ground state energy and Φ is the magnetic flux
piercing the ring. At finite temperature one should use the free energy F instead of
the ground state energy E0. Unfortunately, the Lanczös method gives only a few
lowest eigenenergies and, therefore, the calculations are restricted to relatively low
temperatures. In the absence of impurity both increasing temperature and increas-
ing amplitude of interactions reduce the current. This result holds independently
of the sign of the on-site interaction U . The situation changes when impurities
are introduced into the system. The influence of a single impurity is different for
attractive and repulsive interactions. Namely, for U < 0 the presence of the impu-
rity reduces the current, whereas for U > 0 the maximum current occurs for finite
value of the impurity potential. The overall dependence of the maximum value of
the current on both the interaction and impurity potential is presented in Fig. 1.
Such a behavior can be understood taking into account that the impurity plays the
role of a pinning center for charge density waves (CDW). In the case of attractive
electron–electron interaction even the pure system is unstable towards formation
of the CDW. An impurity enhances this tendency further, reducing the current.
On the other hand, in the absence of the electronic correlations an impurity itself
produces Friedel’s oscillations, i.e., the CDW in the vicinity of the impurity. These
oscillations lead to a reduction of the current, which can be seen in Fig. 1: for
U = 0 the maximum current corresponds to W = 0. For finite W , independently
of its sign, the current is reduced. In this regime, repulsive electron–electron in-
teraction suppresses Friedel’s oscillations, which results in a partial restoration of
the current, that achieves its maximum amplitude for U ≈ |W |.

Fig. 1. Dependence of the maximum current on the electron–electron interaction (U)

and the impurity potential (W ) for a 6-sites ring with a single impurity.
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The role of impurities in formation/enhancement of the CDW is more pro-
nounced in the presence of two impurities, when the density waves pinned by
impurities interfere. Figure 2 demonstrates how the maximum current depends on
the distance d between the impurities in 12-site ring. Results for both attractive
and repulsive interaction are presented. The oscillatory nature of this dependence
results from the interference of the CDW enhanced (U < 0) or formed (U > 0) in
the vicinity of these two impurities. When the number of lattice constants between
the impurities is even (odd) the overall CDW is enhanced (reduced), which leads
to the reduction (enhancement) of the current. Figure 3 shows the flux dependence
of the current for various impurity configurations. Let us note that the strongest

Fig. 2. Dependence of the maximum current Imax on the distance d between impurities

in 12-site ring for repulsive (left panel) and attractive (right panel) interactions. The

horizontal lines indicate Imax in the absence of impurity (dashed line) and in the presence

of a single impurity (dotted-dashed line). I0 = t/Φ0 and a is the lattice constant.

Fig. 3. Persistent current in 12-site ring as a function of the applied magnetic flux for

various disorder realizations. Notation “d = n” means that there are two impurities

separated by n lattice constants. U = −2t and W = 0.5t has been assumed.
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suppression of the current takes place for d = 2, 4, 6, i.e., in the cases, when the
density waves pinned by different impurities remain in phase.

For three or more impurities the resultant influence also depends on distances
between the impurities. In particular, when most of these distances are even
multiples of the lattice constant the CDW is enhanced and the current is strongly
reduced.

3. Finite-width ring

In this section we analyze how the impurity-generated or impurity-
-enhanced CDW affects properties of rings of finite width. Since the Lanczös
method is applicable only to relatively small systems, consisting of up to several
lattice sites, here we have to abandon this exact method. Instead, we solve the
Bogolyubov–de Gennes equations (BdG) [10]. In order to do that, we have to
decouple the interaction term in the Hamiltonian (1):

U
∑

i

ni↑ni↓ ' U
∑

i

(〈ni↑〉ni↓ + ni↑〈ni↓〉) + U
∑

i

∆SC
i a†i↑a

†
i↓ + h.c. (3)

The first term on the RHS of Eq. (3) is responsible for the formation of CDW,
∆SC

i = 〈ai↓ai↑〉 denotes local superconducting order parameter and is different
from zero only for U < 0. After the decoupling the Hamiltonian can be diagonal-
ized by means of the BdG equations. See, e.g., [11, 12] for the details. The solution
gives us full description (at the mean-field level) of the system under investiga-
tion as a function of the applied flux. In particular, we obtain the amplitude of
the persistent current and spatial distributions of the CDW and superconducting
order parameters. As an example Fig. 4 shows the current distribution in 4 × 30
ring with two impurities. One can see that the distribution is modified only in

Fig. 4. (a) Current distribution in 4 × 30 ring with two impurities. (b) Difference

between current distribution in clean ring and ring with two impurities (not in scale).

the close neighborhood of the impurities. As a result the persistent current is not
as strongly modified as in the 1D case. On the other hand, the CDW that is
enhanced around impurities, strongly modifies other properties of the ring. Fig-
ure 5 shows spatial distribution of CDW and superconducting order parameters
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Fig. 5. Spatial distribution of the CDW order parameter (∆CDW
i ), the superconducting

order parameter (∆SC
i ), and ∆i ≡

√
(∆CDW

i )
2

+ (∆SC
i )

2
. Dark squares indicate regions

of large amplitude of the order parameter. See text for explanation.

calculated for 4×30 ring with pairing interactions (U < 0). These strips represent
cut and unfolded rings. The upper three stripes (Fig. 5a) describe a ring with two
impurities for which the pinned density waves are out of phase. The suppression
of the superconducting order parameter occurs only in the vicinity of the impu-

rities. The third stripe shows ∆i ≡
√(

∆CDW
i

)2 +
(
∆SC

i

)2 and this parameter
is almost constant, except the sites occupied by impurities. This illustrates the
competition between superconductivity and CDW phase. The next three stripes
(Fig. 5b) show a ring with three impurities. In this case density waves pinned by
two of the impurities are in phase, whereas the third one is out of phase. In such
a configuration the region of enhanced CDW order, and consequently the region
of reduced superconducting order, is much larger. ∆i also in this case is almost
constant over the whole ring.

4. Summary

We have presented numerical analysis of the nanoscopic ring pierced by ex-
ternal magnetic field. A large number of factors affecting the properties of the
ring has been taken into account. We have demonstrated how imperfectness mod-
ifies properties of the ring in the presence of electronic correlations. In particular,
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we have shown how a specific realization of the disorder enhances or reduces the
persistent current through the suppression or enhancement of the CDW. These
investigations are important mainly because of the discrepancy between experi-
mental results and theoretical predictions.
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