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The concept of topological excitations and the related ground state

degeneracy are employed to establish an effective theory of the supercon-

ducting state evolving from the Mott insulator for high-Tc cuprates. The

theory includes the effects of the relevant energy scales with the emphasis

on the Coulomb interaction U governed by the electromagnetic U(1) com-

pact group. The results are obtained for the layered t−t′−t⊥−U−J system

of strongly correlated electrons relevant for cuprates. Casting the Coulomb

interaction in terms of composite-fermions via the gauge flux attachment

facility, we show that instanton events in the Matsubara “imaginary time”,

labelled by a topological winding numbers, governed by gauge flux changes

by an integer multiple of 2π, are essential configurations of the phase field

dual to the charge. The impact of these topological excitations is calculated

for the phase diagram, which displays the “hidden” quantum critical point

on verge of the Mott transition that is given by a divergence of the charge

compressibility.

PACS numbers: 74.20.–z, 74.20.Fg, 71.10.Pm

1. Introduction

The discovery of high-temperature superconductors (HTSC) and follow-up
studies of strongly correlated (SC) fermionic systems reveal that an explanation
of their unusual properties appears unlikely in a way of thinking rooted in an in-
dependent electron picture. It is widely accepted that the central issue in the high
temperature superconducting cuprates is physics of the doped Mott insulator [1].
There are also strong indications [2] that much of their behavior is governed by the
proximity to a kind of quantum critical point (QCP). However, the resemblance to
a conventional QCP is hampered by the lack of any clear signature of thermody-
namic critical behavior. Usually, a QCP would be the end-point of a critical line
below which an ordered phase takes place and it could be made manifested below
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the superconducting dome. Experiments appear to exclude any broken symmetry
around this point although a sharp change in transport properties is observed [3].
Unfortunately, our understanding of the underlying orders in cuprates is far from
being satisfactory and identifying the nature of the putative QCP is an open ques-
tion. A possible way out from this difficulty would be if the degrees of freedom
that rule QCP’s are different from the energy degrees of freedom that govern the
stable phases the critical point separates. Thus these “non-conventional” degrees
of freedom could provide critical fluctuations beyond those of the order parameter
fluctuations usually included in the standard Ginzburg–Landau–Wilson (GLW)
description [4, 5]. While the spontaneous symmetry breaking has become one of
the main guiding principles in physics [6], there are other signatures in a physical
system that are associated with the topological effects. These are instrumental for
a full understanding of the physics and lead to a host of rather unexpected and
exotic phenomena, which are in general of a nonperturbative nature. For exam-
ple, an SC electronic system can have non-trivial topological properties which can
be described by gauge fields [7]: a phase of the many-body wave function might
be arbitrary but correlations among the local phases of its constituents can bring
unusual gauge structures [8]. Quantum theories with topological properties have
raised considerable interest in connection with a wide range of problems, among
them the Aharonov–Bohm (AB) effect [9], which establishes the reality of the
electromagnetic gauge potential, is a typical example.

In the present paper recognizing the significance of the AB non-integrable
phase factor we consider the representation of strongly correlated electrons as
fermions plus attached “flux tubes”. Furthermore, taking into account the proper
topology of the phase field dual to the charge, we recognize that the elementary
excitations in strongly correlated system always carry 2π-kinks of the phase field
characterized by the topological winding number. We reveal the impact of these
topological excitations for the phase diagram of cuprates and show that they can
induce its unusual feature: a “hidden” quantum critical point of a novel type that
is not related to the symmetry breaking.

2. Electronic model

We consider an effective one-band electronic Hamiltonian on a tetragonal
lattice that emphasizes strong anisotropy and the presence of a layered CuO2

stacking sequence in cuprates: H = Ht−J +HU +H⊥, where

Ht−J =
∑

α`


−

∑

〈rr′〉
(t + µδr,r′)c

†
α`(r)cα`(r′) +

∑

〈〈rr′〉〉
t′c†α`(r)cα`(r′)




+
∑

`

∑

〈rr′〉
J

[
S`(r) · S`(r′)− 1

4
n`(r)n`(r′)

]
. (1)

Here 〈r, r′〉 and 〈〈r, r′〉〉 denotes summation over the nearest-neighbor and next-
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-nearest-neighbor sites labelled by 1 ≤ r ≤ N within the CuO plane, respec-
tively, with t, t′ being the bare hopping integrals t′ > 0, while 1 ≤ ` ≤ N⊥ la-
bels copper-oxide layers. The operator c†α`(r) (cα`(r)) creates (annihilates) an
electron of spin α at the lattice site (r, `), Sa

` (r) (a = x, y, z) stands for spin
and n`(r) = n↑`(r) + n↓`(r) number operators, respectively, where nα`(r) =
c†α`(r)cα`(r), µ is the chemical potential and J the antifferomagnetic (AF) ex-
change. The Hubbard term is HU =

∑
`r Un↑`(r)n↓`(r) with the Coulomb

energy U , while H⊥ = −∑
rr′ t⊥(rr′)c†α`(r)cα`+1(r′) facilitates the interlayer

coupling, where t⊥ is the interlayer hopping with ε⊥(k, kz) = 2t⊥(k) cos(ckz),
while t⊥(k) = t⊥ [cos(akx)− cos(aky)]2 as predicted on the basis of band calcula-
tions [10].

3. Gauging out the Coulomb interaction

We write the partition function as Z =
∫

[Dc̄Dc̄] e−S[c̄,c] with the action

S[c̄, c] =
∫ β

0

dτ

[∑

αr`

c̄α`(rτ)∂τ cα`(rτ) +H(τ)

]
(2)

using coherent-state fermionic path integral over the Grassmann fields depending
on the “imaginary time” 0 ≤ τ ≤ β ≡ 1/kBT . Further, we write the Hubbard
term in a SU(2) invariant way as

HU (τ) = U
∑

r`

{
1
4
n2

`(rτ)− [Ω`(rτ) · S`(rτ)]2
}

(3)

with charge-U(1) and spin-SU(2)/U(1) sectors, where the unit vector Ω`(rτ) sets
varying in space-time spin quantization axis [11]. In the following we fix our
attention on the U(1) invariant charge sector [12]. We consider now the following
resolution of unity using the Faddeev–Popov method [13],

1 ≡
∫

[DQ]δ [Q− n] =
∫ [DV

2π

]
exp

[
i
∑

r

∫ β

0

dτ(Q− n)V

]
, (4)

where n(rτ) =
∑

α c̄α(rτ)cα(rτ) represents the particle number, Q(rτ) is the
collective variable and iV (rτ) is fluctuating (in space and time) imaginary chemical
potential conjugate to the local particle number n`(rτ). The field V`(rτ) can be
written as a sum of a static V0`(r) and periodic function V (rτ) = V0(r) + Ṽ (rτ)
using the Fourier series Ṽ (rτ) = 1

β

∑∞
n=1[Ṽ (rωn)eiωnτ + c.c.] with ωn = 2πn/β

(n = 0,±1,±2) being the (Bose) Matsubara frequencies. Now, we introduce the
phase (or “flux”) field φ`(rτ) via the Faraday-type relation φ̇`(rτ) ≡ ∂φ`(rτ)

∂τ =

Ṽ`(rτ) to remove the imaginary term i
∫ β

0
dτ Ṽ`(rτ)n`(rτ) for all the Fourier modes

of the V`(rτ) field, except for ωn = 0 by performing the gauge transformation to the
new fermionic variables fα`(rτ), where cα`(rτ) = eiφ`(rτ)fα`(rτ), which indicates
that the electron acquire a phase shift similar to that in the electric AB effect [9].
The electromagnetic U(1) group governing the phase field is compact, i.e. φ`(rτ)
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has the topology of a circle (S1), so that topological effects can arise due to non-
-homotopic mappings of the configuration space onto the gauge group S1 → U(1).

4. Effective action with angle U(1) variables

We can now formulate the path integral for the partition function. For this
we concentrate on closed paths (or world lines) in the imaginary time τ that start
at position r` at imaginary time τ = 0 and end at the same position at τ = β,
which fall into distinct, disconnected (homotopy) classes labelled by the winding
number [14]. Homotopically distinct paths can be summed according to various
possibilities for inequivalent quantizations (superselection sectors) according to the
formula

Z =
∑

{m`(r)}

∫ 2π

0

∏

r`

dφ0`(r)
∫ φ`(rβ)=φ`0(r)+2πm`(r)

φ`(r0)=φ0`(r)

×
∏

r`τ

dθ`(rτ)
∫ [Df̄Df

]
e−S[θ,m,f̄,f ],

S[θ, m, f̄ , f ] =
∑

`

∫ β

0

dτ

{
1
U

∑
r

[
∂θ`(rτ)

∂τ
+

2π

β
m`(r)

]2

+
2µ

U

∑
r

1
i

[
∂θ`(rτ)

∂τ
+

2π

β
m`(r)

]

+H
[
f̄α`(rτ), fα`(rτ), θ`(rτ), m`(r)

]}
. (5)

The first order in time derivative term in Eq. (5) is just the topological action which
does not affect the equation of motions but influences statistics [8]. The gauge
transformation introduces phase factor into the hopping elements of the Hamil-
tonian which frustrate the motion of the fermionic subsystem. However, when
charge fluctuations become phase coherent, which is signalled by 〈eiφ`(rτ)〉 6= 0,
the frustration of the kinetic energy is released. To proceed, we trace over the
fermionic degrees of freedom in Eq. (5) and introduce the unimodular complex
scalar z`(rτ) = eiφ`(rτ), where the unimodularity constraint can be imposed with
a real Lagrange multiplier λ. The partition function then becomes

Z =
∫ [D2z

] ∏

r`

δ
(|z`(rτ)|2 − 1

)
e−S[z,z?], (6)

where

S[z, z?] =
1

βNN⊥

∑
qωn

z?
q(ωn)Γ−1

q (ωn)zq(ωn). (7)

Here, q ≡ (k, kz) and, at the superconducting boundary line, the condition
Γ−1

q=0(ωn = 0)|λ=λc = 0 fixes the Lagrange parameter while
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Γ−1
q (ωn) = λ− Σ (q, ωn) + γ−1(ωn),

Σ (q, ωn) = J ′‖(∆) cos(akx) cos(aky)

+
∑

q′

ξk′Γq+q′(ωn)
NN⊥

[J̄‖(∆) + J⊥(∆) cos(ckz)
]
, (8)

where ξk = cos(akx) + cos(aky). Furthermore, γ0(ωn) is the Fourier transform of
the bare phase correlator 〈e−i[φ`(rτ)−φ`′ (r

′τ ′)]〉0 originating from the kinetic and
topological part of the action in Eq. (5). The microscopic phase stiffnesses to the
lowest order in the hopping amplitudes are given by

J‖(∆) =
1
2

t2

βN2

∑
νn

[∑

k

|∆(k)|
ν2

n + µ̄2 + |∆(k)|2
]2

,

J ′‖(∆) = − t′µ̄
βN

∑

k,νn

cos(akx) cos(aky)
ν2

n + µ̄2 + |∆(k)| ,

J⊥(∆) =
1

βN2

∑

k′k

∑
νn

t2⊥(k′)|∆(k)|2
[ν2

n + µ̄2 + |∆(k)|2]2 , (9)

where µ̄ = µ − nfU/2, nf = 〈f̄α(rτ)fα`(rτ)〉 is the occupation number for
f -fermions and νn = π(2n + 1)/β (n = 0,±1,±2) stand for the Fermi–Matsubara
frequency. The stiffnesses in Eq. (9) rest on the “d-wave” pair amplitude
∆(k) = |∆|[cos(akx)−cos(aky)] due to the in-plane momentum space pairing of the
f -fermions. A Gorkov-type decoupling of the AF exchange term in Eq. (1) using
the valence bond operator [15] readily gives for the gap parameter

1 =
J

N

∑

k

[cos(akx)− cos(aky)]2

2Ek
tanh

(
1
2
βEk

)
(10)

with the quasiparticle spectrum, E2
k = [ε?

‖(k)− µ̄]2 + |∆(k)|2. Here, ε?
‖(k) is effec-

tive in-plane band dispersion narrowed due to the frustrated motion of the carriers
in the fluctuating “bath” of U(1) gauge potentials, so that the actual tight-binding
parameters are “dressed” ones t?X = tX〈e−i[φ`(rτ)−φ`(r

′τ)]〉, where tX = t, t′, t⊥ are
the bare band parameters.

5. Results

The resulting temperature–chemical potential phase diagram is depicted in
Fig. 1. First, it shows that Tc correlates with the diagonal hopping t′ in accor-
dance with the observation that the next-nearest-neighboring hopping dominates
the variation of the maximum Tc in hole doped cuprates [16]. Further, the phase
diagram in Fig. 1 exhibits the special point at µc defined by 2µc/U = 1/2 away
from the incompressible Mott state at 2µc/U = 1 from which the superconducting
lobe emanates. In cuprates there is clear evidence for the existence of a special
doping point xc in the lightly-overdoped region where superconductivity is most
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Fig. 1. The superconducting critical temperature Tc as a function of the chemical po-

tential µ for the model’s parameters as indicated in the plot. The label lQCP marks

a special point hidden in the superconducting dome, where the local charge suscepti-

bility diverges and superconductivity is most robust. Shaded area: the density plot

of the charge susceptibility χ̃c = Uχc/2. In the “V-shaped” region fanning out to fi-

nite temperatures the electronic matter in its charge aspect is very “soft”, i.e. highly

compressible as opposed to the incompressible (χc = 0) Mott state.

robust. Such behavior indicates that this point could be a QCP while the as-
sociated critical fluctuations might be responsible for the unconventional normal
state behavior [2]. Experiments appear to exclude any broken symmetry around
this point although a sharp change in transport properties is observed [3] and
∂µ/∂x becomes vanishingly small due to slow chemical potential shift implying
a divergence of charge susceptibility [17]. We argue that due to topological ex-
citations indeed such a singularity arises at µc in the local charge susceptibility
χc = ∂ne/∂µ, where ne ≡ 〈c̄α(rτ)cα`(rτ)〉 is the electron filling. From Eq. (5)
we readily obtain that ne = nf + nb − 2µ/U , where the topological contribution
is given by nb = 2µ/U + (2/iU)〈φ̇(rτ)〉. In the large-U limit µ → nfU/2 so that
ne → nb for strong correlations ne is governed by the topological winding numbers
rather than the number of fermionic oscillators. However, the winding number is
a topologically conserved quantity and is “protected” against the small changes
of µ. Being an integer it cannot change at all if it has to change continuously. For
substantial perturbations the ground state crosses over abruptly to other eigen-
states: nb can change only when level degeneracies occur which happens at isolated
discrete values of 2µ/U . For T = 0 we obtain for the bosonic occupation number
nb = 2µ/U − h(2µ/U), where h(ξ + 1/2) + 1/2 = ξ − [ξ], while [ξ] is the greatest
integer less than or equal to ξ. Clearly, charge susceptibility diverges at µc, thus
marking the local QCP of a novel type, not related to the paradigm of symmetry
breaking but resulting from topological effects in strongly correlated system.
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6. Conclusions

In the present work focusing on t−t′−t⊥−U−J model it is shown that the
topological excitations of charge given by the collective U(1) phase field in a form
of “flux tubes” attached to fermions can reproduce many robust features present
in the phase diagram of high-Tc cuprates, thus substantiating one of the emerging
paradigms in the condensed matter physics, namely the ubiquitous competitions
in strongly correlated systems. The fundamental entities that carry charge (and
spin) in the copper oxides are no longer the usual Landau quasiparticles but the
“flux tube” fermion composites. When charges are “liberated” then they can con-
dense leading to superconductivity. This picture naturally leads to the pseudogap
physics that is observed in the underdoped cuprates, which originates from the
momentum pairing (in a d-wave pattern) of the fermionic parts of the electron
composite controlled by the antiferromagnetic superexchange J . This underlines
the necessity of the fundamental concept of fermion pairing in achieving the su-
perconductivity. In particular, we found that for strong correlations the system is
governed by the topological U(1) winding numbers. However, the winding num-
ber is a topologically conserved quantity and is “protected” against the small
changes of system parameters. Being an integer it cannot change at all if it has to
change continuously. However, changing the interaction by a large amount may
cause abrupt changes in ground state properties described by different topolog-
ical quantum number, which leads to a change of topological order [18]. This
kind of stability might be generic for quantum systems governed by topologically
non-trivial groups manifolds.
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