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We consider a model of high-Tc superconductors with an anisotropic

boson-mediated pairing mechanism corresponding to the nearest-neighbor

interactions, and the one-particle dispersion relation characterized by 2D

Fermi surface nesting. Based upon the tight-binding or t−J approaches

with half-filling we show that the effective pairing potential coefficients and

the dispersion relation, which can be characterized by the parameter η =

2t1/t0, have a diverse and mutually competing influence on the values of

transition temperatures. The spin-singlet d-wave symmetry superconducting

state is realized for small values of η, whereas for sufficiently large values,

the spin-triplet p-wave symmetry superconducting state should be formed.

The specific heat jump and the isotope shift, as functions of the parameter

η, are evaluated for the d- and p-wave symmetry.

PACS numbers: 74.20.Rp, 74.62.Yb

1. Introduction

In present theoretical investigations of high-Tc superconductors it is ac-
cepted that they should be considered as quasi-2D, strongly anisotropic systems
of fermions [1–3]. In some more composed approaches superconductivity is con-
sidered as a mixture of coexisting local pairs and itinerant fermions coupled via
a charge exchange mechanism [4, 5], or additional terms of energy are included,
such as the formation energy of the Zhang–Rice singlet [6] or the Peierls phase fac-
tor, responsible for the diamagnetic response of the system [7]. Such approaches,
which find their origin in a proposed model of the anisotropic Fermi liquid [8],
allow us to reveal various types of superconducting behavior. However, in general,
one can assume that any superconducting system can be described in terms of
an effective Hamiltonian with a given one-particle dispersion relation ξk, which
should be compatible with experimental data [8, 9] and the anisotropic pairing
potential V (k, k′). Then, after employing the Green function formalism, one can
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obtain in a self-consistent manner the two basic equations: the gap equation in
the momentum space

∆k =
∑

k′
V (k, k′)

∆k′

Ek′
tanh

Ek′

2T
, (1)

where Ek =
√

(ξk − µ)2 + ∆2
k, and the following equation:

2n =
1
N

∑

k

(
1− ξk − µ

Ek
tanh

Ek

2T

)
, (2)

where N denotes the total number of lattice sites. Equation (2) gives the chem-
ical potential µ(T ) as a function of the temperature and the conduction band
filling 0 < n < 1 fixed for the normal metallic phase at T = 0. The chemi-
cal potential µ(T = 0), which allows us to control the carrier concentration n,
in the case of half-filling is equal to zero [7, 8, 10–13]. Since the conventional
phonon-mediated pairing mechanism raises doubts, we assume a generic, boson-
-mediated, strongly anisotropic attraction mechanism providing pairing interaction
in the spin-antisymmetric and the spin-symmetric channels [1, 3, 11]. Moreover,
symmetry elements of quasi-2D superconducting systems correspond to the group
C4v [14, 15].

We claim that in systems, characterized in such a way, the realization of
both the spin-singlet d-wave symmetry state (S = 0, M = 0) and the spin-triplet
p-wave symmetry state (S = 1, M = 0) is possible. In order to substantiate
our statement we consider the tight-binding model, which allows us to carry out
detailed analytical and numerical calculations. The dispersion relation for the 2D
one-band tight-binding model or for the t−J model derived within the quantum
Monte Carlo method, after performing changes of the momentum space variables,
can be written as

ξk = −2t0(cos kx + cos ky + η cos kx cos ky), (3)
where η = 2t1/t0 and the case η = 0 corresponds to the ideal nesting. The
parameters t0, t1 are identified with the nearest-neighbor and the next-nearest-
-neighbor hopping integrals, respectively [16].

On the other hand, the boson-mediated pairing mechanism corresponding to
the nearest-neighbor interactions allows us to obtain the attractive interaction in
the reciprocal space in the form (here ax = ay = 1) [3, 17–19]:

V (k, k′) = −V1[cos(kx − k′x) + cos(ky − k′y)], (4)
with the anisotropic channel amplitude V1 > 0. The potential (4) can be rewritten
as a sum of the spin-singlet V s(k, k′) = V s(−k, k′) = V s(k, −k′) and the spin-
-triplet V a(k, k′) = −V a(−k, k′) = −V a(k, −k′) components [14].

Moreover, the maximal boson energy ωc is identified with the cut-off param-
eter imposed on the one-particle energy, −ωc ≤ ξk ≤ ωc. Therefore, a high-Tc

superconductor is considered as a metallic system with a narrow, half-filled con-
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duction band of the width 2ωc, and the pairing interaction covering the whole
conduction band.

2. Formalism and results

In the present calculations we employ the extended Van Hove scenario (VHS)
method [8, 11, 9] and show that the basic Eqs. (1) and (2), after a sequence of
curvilinear transformations of the k-space can be formulated in polar coordinates
ξ (the quasiparticle energy) and ϕ, accompanied by the kernel of the density of
states K(ξ, ϕ). The spatial structure of the order parameter is determined by a
predominant coefficient of the expansion of the pairing potential in the double
Fourier series.

First, applying the BCS-type approximation we assess the transition tem-
peratures Tc0(l, η) for the actual pairing coefficients Ul(η) for l = 0, 1, 2, 4 [14, 15].
The forms of the actual pairing coefficients and the transition temperatures are
presented in Figs. 1a and c, respectively. In Fig. 1b, the reduced mean value of the
density of states vs. the parameter η is displayed. The derived transition temper-
atures allow us to state that within the BCS-type approximation the d-wave state
(l = 2) is preferred if exclusively spin-singlet pairs can be formed. On the other

Fig. 1. The BCS-type approximation. (a) The relation between actual s-wave (dot),

p-wave (solid), d-wave (dash), g-wave (dash-dot) symmetry pairing coefficients Ul(η)

and V1 as functions of η (0 < η ≤ 1.62). (b) The reduced mean value of the density of

states πt0ν0(η). (c) The transition temperatures Tc0(l, η) for V1 = 2πt0 and ωc ≈ 560 K.
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hand, since U1(η) > U2(η) for all values of η, the spin-triplet (S = 1, M = 0)
p-wave state (l = 1) is the preferred one, in general. The spin-singlet isotropic
s- and anisotropic g-wave states (l = 0, 4) cannot be realized because of their
extremely low relative transition temperatures.

The formulae obtained within the extended Van Hove scenario [9, 15, 20]
allow us to estimate some characteristic parameters of the superconductor as tran-
sition temperatures Tc(l, η), the specific heat jump ∆C (Tc(l, η)) and the isotope
exponent α(l, η) as functions of η. Following the experimental data [21, 22], where
one can find η = 0.375, 0.917, 1.055, 1.113 or 1.53, t0 = 0.24 eV (≈ 2800 K), and
ωc = 0.026 ÷ 0.065 eV, we can choose ωc = 0.0048 eV (≈ 560 K). In numerical
evaluations we consider 0 < η ≤ 1.62, and we assume that the effective dimen-
sionless pairing coefficient 1

2
ν0(η)U2(η) < 0.41, which satisfies the weak-coupling

condition, though the pairing coefficient V1 can be large (V1 = 2.87 eV), such that
the standard dimensionless coefficient achieves the limit 1

2
ν0(0)V1 = 0.815.

Fig. 2. (a) The transition temperatures Tc(1, η) (solid) and Tc(2, η) (dash) obtained

within the extended VHS for V1 = 2πt0 and V0 = 0 in comparison with the transition

temperatures T ∗c (2, η) (dot) obtained in the frame of the standard VHS. (b) Supreme

values of the transition temperatures Tc(1, 0) (solid), Tc(2, 0) (dash), T ∗c (2, 0) (dot) for

0.6 ≤ V1/2πt0 ≤ 1.9.

In Fig. 2 we present transition temperatures for p- and d-wave symmetry
superconducting states. For V1 = 2πt0 = 1.5 eV, when 1

2
ν0(0)U2(0) = 0.215,

the supreme values of the transition temperatures Tc(1, 0) = 21.1 K, Tc(2, 0) =
52.6 K and Tc(2, η) > Tc(1, η) for 0 < η < 0.256. Moreover, T c(1, 0.256) =
Tc(2, 0.256) = 2.47 K, and Tc(1, 1.62) = 0.031 K, Tc(2, 1.62) = 4.41 × 10−6 K.
Hence, in cuprates the d-wave symmetry superconducting state is realized for
sufficiently small η. Instead, when η exceeds a characteristic value, the p-wave
symmetry spin-triplet pairs should appear. The p-wave pairing becomes plausible
when magnetic correlation effects in the CuO2 planes determine the dispersion
relation [1, 3]. Moreover, T ∗c (2, η) obtained according to the standard Van Hove
scenario, is lower than Tc(2, η) and Tc(1, η) for all η.
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Fig. 3. (a) The reduced value of the specific heat jump at the transition temperature

for p-wave (solid) and d-wave (dash) symmetry superconducting states plotted against

the BCS-model value 9.38 (dot). In the limit η → 0 they are equal to 5.35 and 5.17,

respectively, though they are almost constant around 5.3 for all values of the parameter

η under consideration. (b) The isotope shift α(l, η) for p-wave (solid) and d-wave (dash)

symmetry superconducting states plotted against the BCS-model value 0.5 (dot). In the

limit η → 0 they are equal to 0.35 and 0.22, respectively. Let us note that the supreme

value α(2, 0.091) = 0.345 and for η ≥ 0.256, α(1, η) ≈ 0.5.

In Figs. 3a and b we present the reduced specific heat jump at the tran-
sition temperature and the isotope shift α(l, η) for p-wave and d-wave symmetry
superconducting states.

3. Conclusions

The obtained results evidence that the lack of the competition between sin-
gularities in the kernel of the density of states and pairing coefficients as in the
BCS-type or standard Van Hove scenario approaches causes that the p-wave sym-
metry superconducting state dominates absolutely, since it corresponds to the
largest absolutely coefficient U1(η). Thus, both the anisotropic attractive poten-
tial and dispersion relation have a crucial influence on values of the transition
temperature. This result proves that, while considering a model of a supercon-
ductor with an anisotropic pairing potential, one has to include the kernel of the
density of states K(ξ, ϕ) instead of the density of states ν(ξ) as e.g. in the standard
Van Hove scenario [12, 20, 21, 23–28].

As distinct from some other approaches, where stability of superconducting
states was investigated in dependence on the carrier concentration n for η = 0 [10],
the obtained results delineate regions of stability of spin-singlet d-wave and spin-
-triplet p-wave superconducting states for 0 < η ≤ 1.62 and near to the half-filling,
n = 0.5. These two types of approaches can be compared if η = 0 and n = 0.5,
only, though both for large n and for large η, respectively, the stable d-wave state
is replaced by the p-wave one.



498 R. Gonczarek, M. Krzyzosiak

Acknowledgments

This work was supported by the grant No. PBZ-MIN-008/P03/2003.

References

[1] P. Monthoux, G.G. Lonzarich, Phys. Rev. B 66, 224504 (2002).

[2] A. Nazarenko, E. Dagotto, Phys. Rev. B 53, R2987 (1996).

[3] D.Y. Xing, M. Liu, Y.-G. Wang, J. Dong, Phys. Rev. B 60, 9775 (1999).

[4] R. Micnas, S. Robaszkiewicz, A. Bussmann-Holder, J. Supercond. 17, 27 (2004).

[5] G. PawÃlowski, S. Robaszkiewicz, R. Micnas, J. Supercond. 17, 33 (2004).

[6] S. Ishihara, N. Nagaosa, Phys. Rev. B 35, 3359 (1987).
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