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In this paper we consider the dynamic Tsallis entropy and employ it for

four model systems: (i) the motion of Brownian oscillator, (ii) the motion

of Brownian oscillator with noise, (iii) the fluctuation of particle density in

hydrodynamics limit as well as in (iv) ideal gas. We show that the small

value of parameter non-extensivity 0 < q < 1 acts as a non-linear magnifier

for small values of the entropy. The frequency spectra become more sharp

and it is possible to extract useful information in the case of noise. We show

that the ideal gas remains non-Markovian for arbitrary values of q.

PACS numbers: 65.40.Gr

1. Introduction

There is a great interest towards studying complex systems of physical, chem-
ical, biological, physiological, and financial origin by using different approaches and
concepts [1, 2]. Significant role in these investigations is played by a concept of
information entropy such as Shannon and Renyi entropy, Kolmogorov–Sinai en-
tropy rate [3–7]. In Refs. [8–10] the notion of dynamical information Shannon
entropy† has been defined for complex systems. It was suggested to generalize the
Shannon entropy by considering square of time correlation function (TCF) as a
probability of state. Then the entropy becomes a function of time. The dynamic
Shannon entropy has been successfully used to obtain new information in dynam-
ics of RR-intervals from human ECG, physiological activity of the individuals, and
short-time human memory [8–10]. The investigations reveal also the great role of
frequency spectrum of dynamic Shannon entropy.

∗corresponding author; e-mail: nail@kazan-spu.ru
†In literature there is standard notion of dynamic entropy (see e.g. Ref. [11]). We

suggest and use the functions S and Sq which we call the dynamic Shannon entropy and
dynamic Tsallis entropy.
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A new approach for entropy was suggested by Tsallis in Ref. [12] (see the
earlier papers on this subject in Ref. [13]). This entropy is characterized by one
parameter q which was called non-extensive parameter. The natural boundary of
this parameter is unity. It means that for q → 1 the Tsallis entropy transforms
to the Shannon entropy. Nevertheless, the cases with q > 0 and even the limit
q → ∞ were often considered. There is/was huge activity for application of this
new notion to various complex systems (see, for example, Ref. [7] and references
therein). It was shown that this entropy gives a new kind of distribution. Many
complex systems in nature are described by this non-Gaussian distribution with
different values of parameter q.

The goal of this paper is generalization of dynamic Shannon entropy in the
same manner as the Tsallis entropy generalizes the Shannon entropy. In other
words, we consider the Tsallis entropy with square of TCF as probability of state.
We refer this entropy as dynamic Tsallis entropy (DTE). The real systems in
nature have very complicated behavior — the useful signal is lost in “sea” of noises
and random unexpected influences. For this reason we would like to consider the
dynamic Tsallis entropy for model systems, which nevertheless have deep physical
contents. Application of the present theory to the alive systems was considered in
Ref. [14]. We employ the information Tsallis entropy and its frequency spectrum
with different values of parameter q for model systems. We exploit four well-
-known models. The first one is the TCF of position of oscillator which performs
the Brownian motion. In order to consider more real situation we use the motion
of Brownian oscillator with noise in second model. The noise is modelled by
generator of random numbers. The third model is the TCF of relaxation of particle
density fluctuations in hydrodynamics limit (the Landau–Placzek formula). We
consider a specific medium — helium. The fourth model describes the relaxation
of particle density fluctuations in ideal gas. In the latter case we additionally
calculate the spectrum of non-Markovity parameter for different q. The non-
-Markovity parameter and its spectrum was firstly suggested in Refs. [15, 16]
and it was calculated for ideal gas in Ref. [17]. This parameter characterizes the
statistical memory effects in systems. In present paper we use slightly different
approach and define the non-Markovity parameter in terms of the entropy.

In all considered models the behavior of the dynamic Tsallis entropies and
their frequency spectrum crucially depend on the parameter q. We observe that
the decrease in this parameter q → 0 allows us to enlarge the fine structure of
entropies and to make their frequency spectrum more sharp.

The organization of this paper is as follows. In Sect. 2 we discuss the well
known hierarchy of Zwanzig–Mori’s kinetic equations and general properties of the
DTE and define different kinds of relaxation times. The TCF of Brownian motion
of oscillator is considered in Sect. 3 and with noise in Sect. 4. The formula of
Landau and Placzek for relaxation of density fluctuations are exploited in Sect. 5.
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The TCF of density fluctuations in ideal gas is used in Sect. 6. We finish our paper
by concluding remarks in Sect. 7.

2. The Zwanzig-Mori hierarchy and dynamic Tsallis entropies

At the beginning we shortly discuss the well known hierarchy of the Zwanzig–
Mori equations [18, 19]. Let us consider the dynamic variable δA(t). It may be,
for example, the Fourier component of density fluctuation. This variable obeys
the Liouville equation

dδA(t)
dt

= iL̂δA(t).

Applying n times the Liouville operator L̂ to the initial variable δA(0) we obtain
the infinite set of variables Bn(0):

Bn(0) = L̂nδA(0),

by using which and the Liouville equation we may obtain the initial dynamical
variable in arbitrary moment of time

δA(t) =
∞∑

n=0

(it)n

n!
Bn.

Applying the Gram–Schmidt orthogonalization procedure [20] to this set of func-
tions we obtain the complete set of dynamic variables Wn which are orthogonal
at the initial time

〈W ∗
nWl〉 = 〈|Wn|2〉δn,l,

where 〈. . .〉 denotes the statistical average over the Gibbs ensemble. If the dynamic
variable is evaluated by the Liouville operator, then the orthogonality is preserved
at any moment of time due to the self-adjointness of the Liouville operator.

The time correlation function M0 of variable W0 = δA is defined as follows:

M0(t) =
〈W0(0)∗W0(t)〉
〈|W0(0)|2〉 =

〈W ∗
0 exp (iL̂t)W0〉
〈|W0|2〉 .

It is well known that this TCF obeys the infinite hierarchy of the Zwanzig–Mori
kinetic equations

dMn(t)
dt

= iω(n)
0 Mn(t)− Ω2

n+1

∫ t

0

dt′Mn+1(t′)Mn(t− t′), (1)

where

ω
(n)
0 =

〈W ∗
n L̂Wn〉

〈|Wn|2〉 , Ω2
n =

〈|Wn|∗〉
〈|Wn−1|2〉

and

Mn(t) =
〈W ∗

n exp (iL̂(n)
22 t)Wn〉

〈|Wn|2〉 . (2)
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The operator L̂
(n)
22 is defined in the following manner:

L̂
(n)
22 = Pn−1Pn−2 . . . P0L̂P0 . . . Pn−2Pn−1

in terms of projectors Pn = 1−Πn, where the Πn is a projector for state Wn:

Πn =
Wn〉〈W ∗

n

〈|Wn|2〉 .

The functions Mn for n ≥ 1 are not, in fact, usual TCFs, because the operator
exp (iL̂(n)

22 t) is not an operator of evolution. Nevertheless, we will refer to these
functions as TCFs for the next dynamic variables.

The functions Mn are considered as functions characterizing the statistical
memory of the system. In order to describe quantitatively the non-Markovity
of hierarchy, the parameter of non-Markovity and its spectrum were introduced
in Refs. [15, 16]. The spectrum‡ of this parameter is defined as ratio of two
neighboring relaxation times

εn =
τn

τn+1
. (3)

The relaxation time τn of function Mn was defined as real part of the Laplace
image (see Eq. (4)) of this function at zero point

τn = RM̃n(0) = R
∫ ∞

0

Mn(t)dt,

where R means a real part. Because the function Mn+1 is an integral core of
integro-differential equation (1) for Mn, then this parameter (3) compares the
integral core with function itself. More precisely we compare squares under TCFs.
If parameter εn is around unity, this level (level means n) is non-Markovian: we
cannot transform integro-differential equation for Mn to differential one, and vice
versa, if this parameter tends to infinity, the core has sharp peak and we may
transform the integro-differential equation for Mn to differential one. In this case
there is no memory (integral) in this level. In this paper we use slightly different
definition for relaxation time (see Sect. 6).

Applying the Laplace transformation

M̃n(s) =
∫ ∞

0

dte−stMn(t) (4)

to Eq. (1), we transform this hierarchy to the infinite system of algebraic equations

M̃n(s) = [s− iω(n)
0 + Ω2

n+1M̃n+1(s)]−1, (5)
by using which we may express Mn in term of zero TCF M0.

In statistical physics of non-equilibrium systems the TCF acts as the func-
tion of distribution and pair correlation and can be used to calculate different
thermodynamical parameters and the spacial structure of the system [21]. For
many physical discrete systems it is impossible to find a distribution function.

‡This is not frequency spectrum. Here the spectrum means set of parameters εn.
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For this reason it seems optimal to obtain the TCF for investigations of complex
systems with the help of integro-differential equations which are based on small
increments of time and independent variables.

The set of the measured parameters of the complex system may be repre-
sented as a set of fluctuations [14]:

Z = {ζ(T ), ζ(T + τ), ζ(T + 2τ), . . . , ζ(T + kτ), . . . , ζ(T + τN − τ)}, (6)
where ζ represents the fluctuation δx of some quantity x.

Let us define the sampling by length k, which starts at the moment T + mτ

by the relation

ζm
m+k = {ζ(T + mτ), . . . , ζ[T + mτ + (k − 1)τ ]}.

The operator which projects the sampling by length k on the sampling at the
initial moment of time has the form

Π =
|ζ0

k〉〈ζ0
k |

〈ζ0
kζ0

k〉
,

where angle brackets mean the scalar product (time average). The utilization
of this projection operator allows us to represent the sampling as a sum of two
independent parts

ζm
m+k = ζm

m+k
′ + ζm

m+k
′′,

where

ζm
m+k

′ = Π ζm
m+k = ζ0

kM0(t), (7a)

ζm
m+k

′′ = (1−Π )ζm
m+k = ζm

m+k − ζ0
kM0(t), (7b)

and TCF M0(t) is defined by (2).
It is easy to see that

〈(ζm
m+k

)2〉 = 〈(ζm
m+k

′)2〉+ 〈(ζm
m+k

′′)2〉,
which is the consequence of orthogonality of (7a) and (7b).

Direct calculations yield

〈(ζm
m+k

′)2〉 = 〈(ζ0
k

)2〉M0(t)2.

For stationary processes, when dispersion does not depend on time, we obtain

〈(ζm
m+k

′′)2〉 = 〈(ζm
m+k

)2〉 − 〈(ζ0
k

)2〉M0(t)2 = 〈(ζm
m+k

)2〉[1−M0(t)2].

Therefore the mean-square value of the fluctuations is presented as a sum of two
parts

〈(ζm
m+k

)2〉 = 〈(ζ0
k

)2〉M0(t)2 + 〈(ζ0
k

)2〉[1−M0(t)2], (8)
or in a generalized form

〈(ζm
m+k

)2〉 = 〈(ζ0
k

)2〉M0(t)2 + 〈(ζm
m+k

)2〉[1−M0(t)2]. (9)
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The above expression (9) has a standard form of a mean value

〈(ζm
m+k

)2〉 = 〈(ζ0
k

)2〉P (t) + 〈(ζm
m+k

)2〉Q(t), (10)
where P (t) is the probability of the state and Q(t) = 1 − P (t). By analogy with
this formula we define

Pn(t) = |Mn(t)|2(Qn(t) = 1− |Mn(t)|2), n ≥ 0 (11)
as the probability of the creation (annihilation) of correlation of fluctuations (or
memory) for the n-th level of relaxation (see, for details Ref. [17]).

In the recent work of authors [10] the dynamical informational Shannon
entropy for the study of complex systems was suggested

Sn(t) = −
∑

i=c,a

Pi(t) ln Pi(t) = −|Mn(t)|2 ln |Mn(t)|2

−[1− |Mn(t)|2] ln[1− |Mn(t)|2], (12a)
where

Sc
n(t) = −|Mn(t)|2 ln |Mn(t)|2, (12b)

Sa
n(t) = −[1− |Mn(t)|2] ln[1− |Mn(t)|2]. (12c)

Here the Sc
n(t) is the entropy for the stochastic channels of memory creation, and

Sa
n(t) is entropy for the stochastic channels of memory annihilation.

The infinite set of TCFs Mn(t) produces the infinite set of entropies which
are defined by relations

Sn[t] = S[Mn(t)], Snc[t] = Sc[Mn(t)], Sna[t] = Sa[Mn(t)].

Because the TCFs are always smaller than unity, all of these entropies are positive.
We also generalize our definitions of entropy due to Tsallis by introducing

parameter of non-extensivity q:

Sq(t) = − [1− |M0(t)|2]q − 1 + |M0(t)|2q

q − 1
, (13a)

Sc
q(t) = −|M0(t)|2q − |M0(t)|2

q − 1
, (13b)

Sa
q (t) = − [1− |M0(t)|2]q − 1 + |M0(t)|2

q − 1
. (13c)

The infinite set entropies are defined by relations

Sn
q [t] = Sq[Mn(t)], Snc

q [t] = Sc
q [Mn(t)], Sna

q [t] = Sa
q [Mn(t)].

We also calculate the frequency spectra Ŝn[ν], Ŝnc[ν], Ŝna[ν], Ŝn
q [ν], Ŝnc

q [ν], Ŝna
q [ν]
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of these functions and define the spectra of the relaxation times by relations

τn = Ŝn[ν]ν=0, τnc = Ŝnc[ν]ν=0, τna = Ŝna[ν]ν=0,

τqn = Ŝn
q [ν]ν=0, τqnc = Ŝnc

q [ν]ν=0, τqna = Ŝna
q [ν]ν=0.

We define the frequency spectrum as the Fourier transformation of these
quantities by relation

M̂n(ν) =
∫ +∞

−∞
Mn(τ)e−2πiντdτ.

To calculate the Fourier transformation of all quantities we use package for numer-
ical Fourier transformation from package “Mathematica”. We tabulate functions
Mn(τ) with step ∆ = 1/40 in range τ = (0, 60). The number of points N = 2401.
Then the Fourier transform

M̂n(ν) =
∫ +∞

−∞
Mn(τ)e−2iπντdτ = 2

∫ +∞

0

Mn(τ) cos(2πντ)dτ

= 2∆R
N−1∑

k=0

Mn(k∆)e−2πikν/N −Mn(0)

is represented as a function of discrete frequencies ν = k/N∆ (k = 0, . . . , N − 1)

M̂n(ν) = 2∆R
N−1∑

l=0

Mn(k∆)e−2πilk/N −Mn(0). (14)

Let us summarize here some analytical results. In the limit q → 1 the for-
mulae (13) transform to Eqs. (12). For this reason we may refer to entropies (12)
as entropies (13) at the point q = 1. The entropy Sn

q (13) amounts to maximum
value, (21−q − 1)/(1− q), at the point |Mn(t)|2 = 1

2 . For small values of |Mn(t)|2
the dependence of entropies Sn

q , Snc
q changes drastically on value of q. For q ¿ 1

we have

Sq ≈ |M0(t)|2q, Sc
q ≈ |M0(t)|2q, Sa

q ≈ |M0(t)|2. (15)
These expressions are valid for all cases: |M0(t)|2 ¿ q, |M0(t)|2 À q and
|M0(t)|2 ≈ q. For comparison we have for small values of |M0(t)|2: S ≈
−|M0(t)|2 ln |M0(t)|2. Therefore Sa

q ¿ Sc
q , Sq, S and we observe that the decrease

in q acts as a magnifier for small values of |M0(t)|2.
For q À 1 and still |M0(t)|2 ¿ 1 we have to consider three cases

q|M0(t)|2 ¿ 1, q|M0(t)|2 ≈ 1 and q|M0(t)|2 À 1. We have correspondingly

Sq ≈ |M0(t)|2, Sc
q ≈

1
q
|M0(t)|2, Sa

q ≈ |M0(t)|2,
[
q|M0(t)|2 ¿ 1

]
,

Sq ≈ −1
q
[(1− |M0(t)|2)q − 1], Sc

q ≈
1
q
|M0(t)|2,

Sa
q ≈ −1

q
[(1− |M0(t)|2)q − 1],

[
q|M0(t)|2 ≈ 1

]
,

Sq ≈ 1
q
, Sc

q ≈
1
q
|M0(t)|2, Sa

q ≈
1
q
,

[
q|M0(t)|2 À 1

]
.
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We observe that for sufficiently large q and small |M0(t)|2 ¿ 1 we have:
Sq, S

c
q , S

a
q ¿ S. Therefore we observe that increase in q is a demagnification

lens for small values of |M0(t)|. We note that the entropies are equal to zero for
arbitrary q for zero value of M0(t) as well as for M0(t) = 1. It is easy to see
that if the TCF M0(t) possesses an extremum at some time t0, the entropies have
extremum, too. The structure of extrema of TCF generates the same structure of
extrema of entropies. After this general frameworks let us consider specific models.

3. The motion of Brownian oscillator

Let us consider the Brownian oscillator which models the particle with in-
ternal oscillatory degree of freedom with frequency ω0. The friction coefficient β

describes the movement of the particle in a medium. We may use the general the-
ory of Zwanzig and Mori [18, 19] for this particle because its position and velocity
are random quantities.

The position and velocity of the Brownian oscillator is subject for equations
dx

dt
= v, (16)

dv

dt
= −2cv − ω2

0x +
F (t) + f(t)

m
, (17)

where c = β/2m, F (t) — external force, f(t) — the Langevin random force. The
random quantities x, v, f are described by the following average values:

〈x〉 = 0, 〈v〉 = 0, 〈f〉 = 0, 〈x2〉 =
T

mω2
0

, 〈v2〉 =
T

m
, 〈xv〉 = 0,

〈xf〉 = 0, 〈vf〉 = 0, 〈f(t)f(t′)〉 = 2Tβδ(t− t′),

where T — temperature in the units of the energy, m — the mass of Brownian
particle.

We use the fluctuation of particle’s position x:

W0 = x(0)

as the initial dynamic variable. The next orthogonal dynamic variables are calcu-
lated with the help of the following recurrent relations:

W1 =
[
iL̂− ω

(0)
0

]
W0,

Wn =
[
iL̂− ω

(n−1)
0

]
Wn−1 + Ω2

n−1Wn−2, n > 1, (18)

where the frequencies ω
(n)
0 and Ωn are defined by equations

ω
(n)
0 =

〈W ∗
n iL̂Wn〉
〈|Wn|2〉 , Ω2

n =
〈|Wn|2〉
〈|Wn−1|2〉 . (19)

The straightforward calculations give

ω
(0)
0 =

〈x(0)v(0)〉
〈|x(0)|2〉 = 0, W1 = (iL̂− ω

(0)
0 )W0 = v(0),
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ω
(1)
0 =

〈v(0)dv(0)
dt 〉

〈|v(0)|2〉 = −2c, Ω2
1 =

〈|v(0)|2〉
〈|x(0)|2〉 = ω2

0 , W2 =
f(0)
m

.

Taking into account the equations of motion (17), one obtains the TCF

M0(t) =
〈x(t)x(0)〉
〈|x(0)|2〉 =

r−er+t − r+er−t

r− − r+
, (20)

where r± = −
(
c±

√
c2 − ω2

0

)
.

To find the TCF for next levels we exploit the Zwanzig–Mori infinite chain
of equations given by Eq. (1). The Laplace image of initial TCF has the following
form:

M̃0(s) =
s− (r− + r+)

(s− r−)(s− r+)
.

With n = 0 we obtain from chain (5) the Laplace image of first memory function

M̃1(s) =
1

s− (r− + r+)
.

Taking the inverse Laplace transform we obtain the first memory function

M1(t) = e(r−+r+)t = e−2ct.

The calculation in closed form of the memory functions on the next relaxation
levels requires the following detailed elaboration of the structure of the Langevin
force f . For example, in order to calculate the memory function M2(t) we need
frequency Ω2 which may be found by setting the mean value of square of the
Langevin force. For this reason we restrict our consideration to first two levels of
relaxation.

We consider the TCF of Brownian oscillator in the case of small damping
p = c/ω0 ¿ 1. In this case the TCF M0(t) has the following form:

M0(t) =
〈x(t)x(0)〉
〈x(0)x(0)〉 = cos(2πν′t)e−c|t| (21)

and describes the motion of Brownian oscillator with frequency ω = 2πν′ À
c = β/2m, where m is the mass of oscillator, and β is the friction coefficient of
Brownian particle [22].

There are two parameters ν′ and c which characterize the frequency oscil-
lation and relaxation damping of TCF, respectively. For simplicity we consider
dimensionless time t, frequency of oscillation ν′, and damping parameter c. The
Fourier transform of square of this TCF has the following form:

M̂2
0 (ν) =

c

2(c2 + π2ν2)
+

c

4[c2 + π2(ν − 2ν′)2]
+

c

4[c2 + π2(ν + 2ν′)2]
.

We consider frequency spectrum of square of TCF because the entropies are
expressed in terms of square of TCF. Therefore there are three maxima at
ν = 0, ν = ±2ν′. In the limit of zero damping c → 0 we obtain
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M̂2
0 (ν) =

1
2
δ(ν) +

1
4
δ(ν − 2ν′) +

1
4
δ(ν + 2ν′)

by using well-known formula

πδ(x) = lim
ε→0

ε

x2 + ε2
.

In this case the spectrum consists of three lines at ν = 0, ν = ±2ν′.
In Fig. 1 we reproduce the entropies (12) and in Fig. 2 we show the spectra

of them for ν′ = 0.1 and for c = 0, 0.01, 0.1, 1. There is a peak in spectra at double
frequency ν = 2ν′ = 0.2 for arbitrary small but non-zero damping c. For zero
damping c = 0 this peak disappears in total entropy. There are peaks in Ŝc and
Ŝa at ν = 0.2 but with opposite sign. We note that the increase in the damping
leads to smearing the fine structure of entropies.

Calculation of the entropies (13) shows that the small values of q “work” as
non-linear magnifier for small value of M2

0 . To illustrate this fact we reproduce in
Fig. 3 the entropies (13) and (12) for q = 1, 0.1, ν′ = 0.1, c = 0.1. First of all, as
expected from Eq. (15) the smaller entropy the greater magnification. Second,

Fig. 1. The plots of entropies (12) for frequency ν′ = 0.1 and c = 0 (a), 0.01 (b),

0.1 (c), 1 (d) (ν′ and c are oscillation and damping parameters of TCF (21)). It is seen

that the time behavior of total S and single channels Sc and Sa of DTEs for various

damping regimes reveals a stochastic ordering of time correlation.
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Fig. 2. The plots of spectra of entropies (12) for ν′ = 0.1 and c = 0 (a), 0.01 (b),

0.1 (c), 1 (d). One can see that a stochastic ordering of time correlation in previous

Fig. 1 reduces to an appearance of specific peculiarities in low frequency region. Weak

damping (c = 0.1) results in amplification of characteristic frequency peaks at ν = 0.2

and ν = 0.4 whereas zero damping (c = 0) leads to a disappearance of specific frequency

peaks.

Fig. 3. The plots of entropies (13) for q = 0.1 and (12) (q = 1) and their spectra

for ν′ = 0.1, c = 0.1. Comparison of dynamic Shannon (q = 1) and Tsallis (q = 0.1)

entropies shows the amplification of DTE for small values of TCF. Therefore one can

conclude that DTE acts as a magnifier for small values of TCF.
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Fig. 4. The plots of entropies (13) for q = 0.1 and (12) (q = 1) and their spectra

for ν′ = 0.1, c = 0.1 and for Brownian oscillator with noise. Comparison of dynamic

Shannon (q = 1) and Tsallis (q = 0.1) entropies shows the amplification of DTE for

small values of TCF. Therefore one can conclude that DTE acts as a magnifier for small

values of TCF.

the entropy Sa
q does not change sufficiently. The great variation proves Sq and

Sc
q . The decrease in q leads to increase in the value of peaks for great frequencies

and makes peaks more sharp. The small q makes better sharpness of frequency
spectra. This is not the case for Sa

q . It does not change great.

4. The motion of Brownian oscillator with noise

The real signal from alive systems often contains noise (see Ref. [14]). For
this reason we suggest the model of Brownian oscillator with noise. We consider
the following model of TCF:

M0(t) = R(t) cos(2πν′t)e−c|t|
, (22)

where R(t) denotes the random numbers in interval (−1, 1) and R(0) = 1. There-
fore the function R(t) makes random the amplitude of oscillation but this is not
the case for frequency and damping parameters. At the beginning we know the
frequency of oscillations. The TCF has more complicated form which is more
close to real dates. The random numbers describe a noise which usually appears
in experiment. The time dependence of entropy is much more complicated but
nevertheless in this case the DTE works better. We observe the appearing peaks
in places, in which we know the peaks must be, but they disappear in noise. There
is another observation: the noise is better for frequency spectrum. The peaks for
small frequencies look better (see Fig. 4).

5. Density fluctuations in hydrodynamical limit

The TCF of density fluctuations in hydrodynamical limit was calculated by
Landau and Placzek [22]. It describes scattering of light in liquid in hydrodynam-
ics limit when k → 0. The TCF has the following form:
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M0(t) = αe−γ′k2t cos ϑskt + (1− α)e−σ′k2t
,

where γ′ = 1
2ρ

[
4
3η + ζ + κ

(
1
cv
− 1

cp

)]
, σ′ = κ/ρcp, α = cv/cp. Here the

cv, cp, κ, η, ζ, ρ, ϑs are specific heat capacities in units of mass at constant vol-
ume and constant pressure, the coefficient of thermal conductivity, the coefficient
of shear viscosity and volume viscosity, the mass density and sound velocity, cor-
respondingly.

The spectrum of this TCF contains three peaks. The central Rayleigh peak
at zero frequency describes isothermal propagation of sound. Two symmetric peaks
at frequencies ω = ±ϑsk describe adiabatic propagation of sound with damping
(the Brillouin doublet).

It is more suitable to define dimensionless time τ by relation τ = ϑskt/2π.
Then the position of the Brillouin doublet will be at the dimensionless frequency
ν = ω/2π = 1, and TCF will take the following form:

M0(τ) = αe−γk2πτ cos 2πτ + (1− α)e−σk2πτ
,

where γ = 1
2ρϑs

[
4
3η + ζ + κ

(
1
cv
− 1

cp

)]
, σ = κ/ρcpϑs, α = cv/cp. We consider a

specific medium — helium at temperature T = 20◦C and pressure p = 1 bar. In
this case we have [23]: α ≈ 0.56, ϑs ≈ 272m/c, γ ≈ 6×10−9m−1, σ ≈ 7×10−9m−1.
We make calculations for k = 2× 107m−1.

Fig. 5. Plots of entropies (13) for q = 0.1 and (12) (q = 1) and their spectrum for

the Landau–Placzek TCF. Here we use the following notations: Sq = S0
q , Sc

q = S0c
q ,

Sa
q = S0a

q , and Ŝq = Ŝ0
q , Ŝc

q = Ŝ0c
q , Ŝa

q = Ŝ0a
q .

In Fig. 5 we reproduce time and frequency dependencies entropies defined
before for two values of parameter q = 1, 0.1. There is periodicity over τ with unit
period which gives the appearance specific peaks in the frequency spectrum (the
Brillouin doublet). We observe the same picture as in previous section. Decreasing
the parameter of non-extensivity q leads to increasing small peaks in entropies
Sqn and Sqcmn , whereas quantity Sqamn is changed insufficiently. The frequency
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spectrum entropies Sqn and Sqcmn becomes more sharp. The shape of frequency
spectrum Sqamn

, in fact, does not change.
The non-Markovity parameter of this system has been calculated earlier in

Refs. [24, 17]. It was shown that in hydrodynamical limit k → 0 the spectrum of
non-Markovity parameter has a form of alternating Markovian and non-Markovian
levels.

6. Ideal gas

Let us consider the Fourier transformation of the fluctuation of the particle
number density of a system

δρk(t) =
1
V

N∑

l=1

exp (ikrl)− N

V
δk,0.

For this case the initial TCF is calculated exactly and it has the following form [22]:

M0(t) =
〈δρk(t)δρk(0)∗〉
〈|δρk(0)|2〉 = e−t2/t2r , t2r = 2m/k2T.

For this variable all the frequencies ω
(n)
0 are equal to zero. The main relaxation

frequencies in Eq. (1) have the simple form

Ω2
n = nΩ2

1 , Ω2
1 = k2T/m.

Let us rescale time t → τ = tΩ1, and the Laplace transformation parameter
s → c = s/Ω1, and the Laplace images M̃n(s) → m̃n(s) = Ω1M̃n(s). In this case
the hierarchy (1) has the following form:

m̃n+1(c) =
1

n + 1

[
1

m̃n(c)
− c

]
.

The Laplace image m̃0(c) may be found in close form

m̃0(c) = e
c2
2

√
π

2
erfc

(
c√
2

)
, (23)

where erfc(x) = 1− erf(x) — additional probability integral.
The inverse transformation may be represented in the following form:

Mn(τ) =
1

2πi

∫ σ+i∞

σ−i∞
ecτm̃n(c)dc,

where σ is greater than real part of zeros of m̃n(c). By using the expression (23)
we may set σ = 0 and by changing c → ix we obtain

Mn(τ) =
1
2π

∫ +∞

−∞
eicxm̃n(ix)dx,

or in manifest form

M1(τ) =
1
2π

∫ +∞

−∞
eiτx

[
1

m̃0(ix)
− ix

]
dx,
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M2(τ) =
1
4π

∫ +∞

−∞
eiτx


 1

1

m̃0(ix)
− ix

− ix


 dx.

We will calculate these formulae numerically. The first three memory functions
and their spectrum are plotted in Fig. 6. In Fig. 7 we reproduce the plot of the
entropy Sn and their frequency spectrum for n = 0, 1, 2.

Fig. 6. The first normalized memory functions Mn(τ) and their frequency spectrum

M̂n(ν) for ideal gas.

Fig. 7. The plot of the time dependence of entropy and its frequency spectrum for

different relaxation levels n = 0, 1, 2 for ideal gas.

It is not difficult to show that the entropy Sn (12) amounts to maximum
value, ln 2, at the point |Mn|2 = 1

2 . For n = 0 the position of maximum is at
the point τ =

√
ln 2 ≈ 0.832. The greater n, the smaller time of maximum. The

relaxation times τ0 ≈ 1.6453, τ1 = 1.0688, τ2 = 0.8630. The parameter of non-
-Markovity [15, 16]:

εn = τn/τn+1

has the following values: ε0 ≈ 1.54, ε1 ≈ 1.24. Let us note that these values are
very close to that calculated in paper [17] directly for TCFs, ε0 ≈ 1.57, ε1 ≈ 1.27.

In Fig. 8 we give the plots of entropy Sn
q and their spectra for q = 1/2 and

q = 3/2. In order to show what happens if we will vary the value of q we reproduce
in Fig. 9 the entropy Sn

q and its spectrum for n = 2 and for q = 0.5, 1, 1.5. To
show the dependence Sn

q for more wide range of q in Fig. 10 we give entropies for
more wide range of q.
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Fig. 8. The plots of time dependent entropy Sn
q and their frequency spectra for q = 1/2

and q = 3/2.

Fig. 9. The time dependent entropy Sn
q and their frequency spectrum for n = 2 and

for q = 0.5, 1, 1.5.

Fig. 10. The time dependence of the entropy Sn
q and its frequency spectrum for six

values q = 0.001, 0.1, 0.5, 1, 1.5, 10 and for n = 0. One observes that the increasing

Tsallis parameter q leads to trampling a quantity of Sq in domain of short time. Due to

this fact one can make sufficient amplification in domain of short time owing to variation

parameter q.
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Fig. 11. The spectrum of all parameters of non-Markovity as function of q. The influ-

ence of parameter q is most effective for small values of q ¿ 1. In all cases we observe

strong non-Markovity and clearly marked effect of statistical memory. The only case

where we may sufficiently increase the non-Markovity properties by decreasing param-

eter q → 0 is cross term ca (see Eq. (24b)). For small enough q ¿ 1 the non-Markovity

parameter εqcan may reach great value εqcan À 1.

By using these three quantities we define seven different spectra of non-
-Markovity parameter:

εqn =
τqn

τqn+1
, εqcn =

τqcn

τqcn+1
, εqan =

τqan

τqan+1
, (24a)

εqcan =
τqcn

τqan+1
, εqacn =

τqan

τqcn+1
, εqcn =

τqcn

τqn+1
, εqan =

τqan

τqn+1
. (24b)

The plots of all quantities are shown in Fig. 11. As expected, at the beginning
more interesting situations are possible for small values of q. For great value of q

all lines tend to constants.
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7. Conclusion

Let us summarize our results. We considered the dynamic Tsallis entropy
and applied it for model systems. In accordance with Refs. [8–10] the square of
TCF is regarded as probability of dynamic state. We used the time dependent
entropies as well as their frequency spectra. We considered four model TCFs
which, nevertheless, have physical sense. The first and second models describe
the motion of Brownian oscillator without and with noise. The noise is modelled
by generator of random numbers. The third model is the Landau–Placzek model
for TCF of particle density fluctuations in hydrodynamic limit. The last model is
ideal gas, the relaxation of particle density fluctuations.

In all models we considered different values of parameter of non-extensivity
q. All entropies have the same structure zeros and extrema as square of TCF. The
magnitude of extrema sufficiently depends on value of q. Small values of q act as
non-linear magnifier: the smaller magnitude of entropy the greater magnification.
Great values of q act in opposite way as demagnified lens. Concerning the fre-
quency spectra of entropies we observe that for small values of q the peaks become
more sharp and larger. For systems with noise this property works better. It is
possible to reveal peaks even if they are lost in noise.

For ideal gas we additionally calculated the spectrum of non-Markovity pa-
rameter by using different definition of relaxation time. By using three kinds of
information Tsallis entropy we defined seven kinds of spectrum of non-Markovity
parameter. We observe that all of these parameters (except εqcan) are close to
unity. It means that the ideal gas remains non-Markovian system for arbitrary
value of q. It is in qualitative agreement with Ref. [25]. The variation q from unity
does not mean the appearance of new interactions. The system becomes ideal and
non-Markovian from this point of view.

Our analysis allows us to conclude that the use of dynamic Tsallis entropy
extends essentially possibilities of the stochastic description of model physical sys-
tems. Advantage of application of DTE is that it allows to strengthen or suppress
fluctuations either in low-frequency or in high-frequency areas of a spectrum. Simi-
lar supervision opens appreciable prospects in the field of the study of real complex
systems of wildlife where dynamic states of physiological and pathological systems
are very important.

Acknowledgments

This work was supported in part by the Russian Foundation for Basic Re-
search grants No. 05-02-16639, 03-02-96250 and by the Russian Humanitarian
Scientific Foundation grant No. 03-06-00218a.



Dynamic Tsallis Entropy for Simple Model Systems 217

References

[1] C. Beck, F. Schlogl, Thermodynamics of Chaotic Systems, Cambridge University

Press, Cambridge 1993.

[2] S.A. Kaufman, The Origins of Order — Self-Organization and Selection in Evo-

lution, Oxford University Press, Oxford 1993.

[3] I. Goychuk, P. Hanggi, Phys. Rev. E 61, 4272 (2000).

[4] Yu.L. Klimontovich, Phys. Scr. 58, 549 (1998).

[5] V. Latora, M. Baranger, A. Rapisarda, C. Tsallis, Phys. Lett. A 273, 97 (2000).

[6] D.J. Scapino, M. Sears, R.A. Ferel, Phys. Rev. B 6, 3409 (1972).

[7] C. Tsallis, Braz. J. Phys. 29, 1 (1999).

[8] R.M. Yulmetyev, M.Ya. Kleiner, Nonlinear Phenomena in Complex Systems 1,

80 (1998).

[9] R.M. Yulmetyev, F.M. Gafarov, Physica A 273, 416 (1999); R.M. Yulmetyev,

F.M. Gafarov, Physica A 274, 381 (1999).

[10] R.M. Yulmetyev, F.M. Gafarov, D.G. Yulmetyeva, N.A. Emeljanova, Physica A

303, 427 (2002).

[11] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Sys-

tems, Cambridge University Press, Cambridge 1995.

[12] C. Tsallis, J. Stat. Phys. 52, 479 (1988).
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