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In the paper, we solve the imaginary-axis Eliashberg equations. We

calculate numerically self-consistently the superconducting order function,

the wave function renormalization factor, and the energy shift function as

a function of the Matsubara frequency. We consider different values of the

average number of the electrons per lattice site. Additionally, we study

the temperature dependence of the order function and the wave function

renormalization factor. The possible extension of the Eliashberg theory to

the case of the high-TC superconductors was also briefly discussed.

PACS numbers: 63.20.Kr, 74.25.Kc

1. Introduction

The natural development of the BCS model [1] is the Eliashberg theory
[2, 3]. The Eliashberg model is successfully used to analyze physical properties
of the classical phonon-mediated superconductors. The theoretical consideration
suggests that this formalism can also be used to analyze thermodynamic properties
of the high-TC superconductors [4].

The starting point of the Eliashberg model is the electron–phonon Hamil-
tonian (the Fröhlich Hamiltonian [5]) which describes coupling of the electron to
an optical phonon mode and the Nambu notation [6]. It is essential that hav-
ing the Fröhlich Hamiltonian in the Nambu representation, one can obtain the
matrix Dyson equation which determines simultaneously normal-state and super-
conducting properties. In the framework of this formalism one can derive, in a
self-consistent manner, the Eliashberg equations. The Eliashberg equations are
written on the imaginary frequency axis and create a set of three non-linear in-
tegral equations plus the electron number equation. The solutions of this set
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of equations are: the superconducting order function, the wave function renor-
malization factor, the energy shift function, and the chemical potential. In the
Eliashberg scheme the superconducting order function determines the strength of
the phonon-mediated potential; the wave function renormalization factor reflects
the enhancement of the electron mass due to the interaction effects. The energy
shift function characterizes the renormalization of the energy band.

Because the Eliashberg equations have complicated structure, in general, it
is impossible to obtain exact analytical results. This means that the analytical
method cannot be used to calculate exactly the thermodynamic properties of the
phonon-mediated superconductors. The analytical approach can be applied only
in qualitative anticipations [7, 8].

In the paper, we are interested in the exact solution of the imaginary-axis
Eliashberg equations near the transition temperature by using a numerical pro-
cedure. We notice that the imaginary-axis Eliashberg equations are amenable to
computer analysis. First, because the sums of the Matsubara frequency are dis-
crete. Second, because the order function, wave function renormalization factor,
and energy shift function are always real functions.

2. Model

2.1. Eliashberg equations

In one band calculation the Eliashberg equations form a coupled set of
non-linear integral equations which determine the superconducting order func-
tion ϕk(iωl), the wave function renormalization factor Zk(iωl), the energy shift
function χk(iωl) and chemical potential µ. The symbol ωl is the Matsubara fre-
quency; ωl ≡ (π/β)(2l + 1); β is the inverse temperature β ≡ (kBT )−1 and kB

is the Boltzmann constant. In our considerations we neglect the momentum de-
pendence of Zk(iωl), χk(iωl) and ϕk(iωl). This approximation is called “the local
approximation” and is used when superconductivity is isotropic [3]. To further
simplify the notation, we have adopted the shorthand ϕ(iωl) ≡ ϕl, Z(iωl) ≡ Zl

and χ(iωl) ≡ χl. Consequently, we can write the Eliashberg equations as follows:

Zl = 1 +
1

ωlβ

∑

km

K(l −m)ZmωmD−1
k (m), (1)

χl = − 1
β

∑

km

K(l −m)(εk + χm − µ)D−1
k (m), (2)

ϕl =
1
β

∑

km

K(l −m)ϕmD−1
k (m). (3)

The set of Eqs. (1)–(3) is supplemented with the electron number equation

n = 1− 2
β

∑

km

(εk + χm − µ)D−1
k (m), (4)

where the symbol n is the average number of the electrons per lattice site (the
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occupation number) and

Dk(m) ≡ (Zmωm)2 + (εk + χm − µ)2 + ϕ2
m. (5)

The electronic band structure is modelled by the three-dimensional band
with the nearest neighbor hopping integral t; εk = −2t[cos(akx) + cos(aky) +
cos(akz)]. The vector a ≡ (a, a, a) is the basis vector of the simple cubic lattice.
In the paper we assume the constant density of states ρ(0) for the electron system.
In our case ρ(0) ≡ 1/(2W ), where W is half of the band width; W = 6t. In the
numerical calculations we take t as an energy unit. The kernel K(l −m) has the
form

K(l −m) ≡
∫ +∞

0

dΩ
2α2F (Ω)Ω

(ωl − ωm)2 + Ω2
, (6)

where α2F (Ω) is the spectral function. The calculation of the spectral function
requires knowledge of the electronic state, the electron density of states, the energy
of phonon, and the electron–phonon matrix elements. This calculation is rather
complicated. Therefore, we make use of the Kresin simplification and introduce
the average phonon frequency 〈Ω〉 [8]. In our consideration 〈Ω〉 = ωD; ωD is the
Debye frequency. Then we write the kernel K(l −m) as follows:

K(l −m) ' λ
ν2

(l −m)2 + ν2
, (7)

where ν ≡ βωD/2π and λ is the electron–phonon coupling function.
In general, the system of Eliashberg equations can be solved numerically.

First, we observe that the functions Zl, χl and ϕl are symmetric

Zl = Z−(l+1), χl = χ−(l+1), ϕl = ϕ−(l+1).

That is why we can rewrite the Eliashberg equations in the appropriate form for
numerical analysis

Zl = 1 +
1

ωlβ

∑

k

+∞∑
m=0

[K(l −m)−K(l + m + 1)]ZmωmD−1
k (m), (8)

χl = − 1
β

∑

k

+∞∑
m=0

[K(l −m) + K(l + m + 1)](εk + χm − µ)D−1
k (m), (9)

ϕl =
1
β

∑

k

+∞∑
m=0

[K(l −m) + K(l + m + 1)]ϕmD−1
k (m). (10)

Additionally, we simplify the electron number equation

n ' 1− 2
β

∑

km

εk − µ

ω2
m + (εk − µ)2

' 1− ρ(0)
∫ W

−W

dε tanh
[
β(ε− µ)

2

]

= 1− 2ρ(0)
β

ln


cosh

(
β(W−µ)

2

)

cosh
(

β(W+µ)
2

)

 . (11)
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We can calculate also the k-momentum dependent part of Eqs. (8)–(10). We
obtain

∑

k

D−1
k (m) ' ρ(0)

∫ W

−W

dεD−1
ε (m) = D1(ωm, Zm, χm, ϕm, µ) (12)

and
∑

k

(εk + χm − µ)D−1
k (m) ' ρ(0)

∫ W

−W

dε(ε + χm − µ)D−1
ε (m)

= D2(ωm, Zm, χm, ϕm, µ), (13)
where

D1(ωm, Zm, χm, ϕm, µ) ≡ ρ(0)R1

(
χm − µ,

√
(Zmωm)2 + ϕ2

m

)
, (14)

D2(ωm, Zm, χm, ϕm, µ) ≡ ρ(0)R2

(
χm − µ,

√
(Zmωm)2 + ϕ2

m

)
. (15)

The function R1 and R2 are defined by

R1(x1, x2) ≡ 1
x2

[
arctan

(
W + x1

x2

)
+ arctan

(
W − x1

x2

)]
, (16)

R2(x1, x2) ≡ 1
2

ln
[
(W + x1)2 + x2

2

(W − x1)2 + x2
2

]
. (17)

2.2. Numerical results

In this part of the paper, we show the exact solution of the Eliashberg equa-
tions along the imaginary axis. In Figs. 1–3 we plot the functions ϕm, Zm and χm

as functions of the integer number m for different values of the occupation number
n. We take 1002 values of the number m in the −501 to 500 range. We discuss the
properties of ϕm, Zm and χm for positive values of the number m, because these

Fig. 1. The order function ϕm as a function of the number m, for different values of

the occupation number n. We assume λ = 2t, ωD = 1.5t.
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Fig. 2. The wave function renormalization factor Zm as a function of the number m,

for different values of the occupation number n. We assume λ = 2t, ωD = 1.5t.

Fig. 3. The energy shift function χm as a function of the number m, for different values

of the occupation number n. We assume λ = 2t, ωD = 1.5t.

functions are completely symmetrical in the number m. As shown in Fig. 1 and
Fig. 2 the functions ϕm, Zm decrease when the number m increases; what is more,
these functions have only positive values. The maximum values of these functions
are always for m = 0. In contrast, the energy shift function χm increases when
the number m increases, is always negative and has minimum value for m = 0
(see Fig. 3). Additionally, we show in Figs. 1–3 that the superconducting order
function, the wave function renormalization factor, and the energy shift function
strongly decrease when the value of the occupation number decreases. We discuss
below the exact relationship between ϕm, Zm, χm and n.

In Fig. 4 we show selected extreme values of the order function, the wave
function renormalization factor, and the energy shift function (we take ϕm, Zm

and χm for m = 0) as a function of the occupation number. In Fig. 4 we show
also the dependence of the chemical potential on the occupation number. Our
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Fig. 4. (A) The order function ϕm=0, (B) the wave function renormalization factor

Zm=0, (C) the energy shift function χm=0 and (D) the chemical potential µ as functions

of the occupation number n. We assume kBT = 0.001t, λ = 2t, ωD = 1.5t.

Fig. 5. The order function ϕm as a function of the number m for different values of

the temperature. We assume λ = 2t, ωD = 1.5t.

numerical calculations can prove that the functions ϕm=0, Zm=0, χm=0 and µ

decrease when the occupation number decreases from 1 to 0.2. From the physical
point of view this result indicates that the superconducting state is the strongest
when the electron band energy is half-filled (the ratio ϕm/Zm has maximal value
for n = 1). One can observe also that the known approximate formula for the wave
function renormalization factor, Z ' 1+λρ(0), correctly qualitatively reconstructs
only the values of Zm for small values of number m and large values of number
n (see Fig. 2 and Fig. 4). In our case Z ' 1.17 and [Zm=0]max ' 1.12. For large
values of the number m or small values of the occupation number n, Z calculated
analytically considerably exceeds the numerical values of Zm. Additionally, one
can see in Fig. 4 that the values of the energy shift function in comparison with
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the values of the chemical potential are very small. Thus on many occasions, one
can neglect the function χm in the physical analysis.

In the next step, we assume the half-filled band and consider the order
function and the wave function renormalization factor for different values of the
temperature close to the transition temperature (in our case the critical tempera-
ture is approximately equal to 0.0012t). We notice also that in case when n = 1
the energy shift function χm = 0 and µ = 0 fulfils the Eliashberg equations. In
Fig. 5 we observe the manifestation of the typical behaviour of the order param-
eter for the function ϕm; when the temperature decreases, the order function ϕm

increases. In contrast to the order function the wave function renormalization
factor very weakly depends on the temperature. This results in hinting that the
many-body effects connected with the electron–phonon interaction cannot be ne-
glected in the physical analysis. In particular, the renormalization of the electron
mass is important. As it is known, this renormalization is directly described by
the function Zm.

3. Concluding remarks

To summarize, we have solved self-consistently the Eliashberg equations for
different values of the occupation number. In general, the values of the function
ϕm, Zm, χm and µ decrease when the occupation number decreases. Therefore
the s-wave superconductivity is the strongest for half-filled electron band energy.
Additionally, we have showed that the energy shift function in the whole range of
the occupation number has very small value in comparison with the value of the
chemical potential. Thus this function can be neglected in the physical analysis.
We have also studied the temperature dependence of the order function and the
wave function renormalization factor. Considerably important is the fact that the
wave function renormalization factor very weakly depends on the temperature,
thus the renormalization of the electron mass, connected with the electron–phonon
interaction, cannot be neglected in complete physical analysis.

The functions ϕm, Zm and χm are obtained for the minimum temperature
equal to kBT = 0.001t. This temperature is near the transition temperature.
As our numerical results shows, even for the temperatures close to the transition
temperature, the exact calculation of ϕm, Zm and χm requires a consideration of
a great number of the Matsubara frequencies. Therefore, the calculation of the
order parameter ∆m ≡ ϕm/Zm for the zero temperature really on fitting is very
complicated.

The results obtained in the paper are correct for the classical phonon-
-mediated superconductors. For high-TC superconductors [9] the presented model
requires meaningful modification. Among other things, in the high-TC supercon-
ductors the band spectrum is quasi-two-dimensional and strongly anisotropic (the
d-wave superconductivity plays a dominating role). Therefore, in the simplest case
the electronic density of states should not be modelled by the constant but by the
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logarithmic function. In this case, the critical temperature is strongly enhanced
from the standard BCS value while the isotope coefficient is small [10].

In the future, in the first step, we will try to analyze the Eliashberg equations
in the self-consistent way for the two-dimensional square lattice with the nearest-
-neighbour hopping integral. We will model the quasi-two-dimensional electron
system by the logarithmic singularity in the electronic density of states (the van
Hove singularity [10]). We will also consider the role of the van Hove singularity
in the presence of the strong Coulomb correlations [11].
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