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The phase and group velocities of the pulsed light are suitably defined

and calculated. So are the duration of both pulses, probe and coupling, and

their energies as a function of the travelled distance. The time evolution, for

a given distance, of the dressed atom state is described by the Liouville–von

Neumann equation for the density matrix.

PACS numbers: 42.50.Md, 42.65.–k, 42.50.Hz

1. Introduction

The development of the electromagnetically induced transparency (EIT)
technique, reviewed by Harris [1], resulted in the slowing down of the light
[2–4] and the storage of optical information [5–7]. Both these effects, slow light
and light storage, showed a good relation to the quantum interference effect [8 and
references therein]. The group velocity reduction has been considered in different
connections. A method based on the steady state solution showed the mechanism
for the loss of the probe field [9]. The slow light propagation in an open three level
system has been analyzed numerically in [10]. Kasapi et al. [11] have described
the group velocity reduction associated with the propagation dynamics for EIT
pulses in 208Pb vapour. Furthermore, Greentree et al. [12] have demonstrated the
influence of turn-on and turn-off transients on the EIT in 87Rb magneto-optical
trap. Roberts et al. [13] have calculated the ground state collisional decay rate
that limits delay and storage times in EIT experiments with condensates. The
nonlinear process associated with the group velocity reduction, such as pulse com-
pression, has been demonstrated by Harris and Hau [14]. The soliton behaviour in
three-level system has been discussed in [15, 16 and reference therein]. It has been
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demonstrated that the three-level atom soliton can propagate with the velocity of
light [15]. The conditions for subluminal to superluminal propagation through the
phase control of the group velocity in a V shaped three-level system have been dis-
cussed in [17]. Finally, the propagation through an anomalous dispersion medium
showed the pulse propagation at a negative group velocity [18, 19].

The standard description of the EIT and its related phenomena, i.e. the pulse
delay, advancement and the light storage, is based on the steady state approach.
Therefore the pulse shape and its duration cannot be properly taken into account.
Moreover, it is assumed that the refractive index and the absorption length are
determined for the constant field. Thus, the change during the propagation of
the pulse shape and its intensity are usually neglected, which is obviously not
justified. For this reason we propose, in the second section, the definitions of the
group velocity for the light pulse and the parameters characterizing its shape. So
we are able to take into account not only the initial time dependence of the light
intensity but also the change of the pulse in the course of the propagation. As
an example of the proposed approach, we consider the propagation of two-colour
pulse tuned to the S1/2−P1/2 transition with the lower S1/2 and upper P1/2 levels
split by hyperfine interaction. In the third section we describe our atomic system,
its state evolution ruled by the Liouville–von Neumann equations for the density
matrix and the propagation of the light pulses described by the reduced Maxwell
equations. Finally, in the fourth section we represent the numerical results for the
pulse and atoms characterizations as functions of time and distance. We consider
the long and short pulse durations as compared with the spontaneous decay time.
In all cases we have found that the group velocity and other features do depend
on the distance that the pulse travels.

2. The characteristics of the light pulse

The light pulse is generally, represented at a given time t and a distance z

by the electric field

E(z, t) = exp
(
−iω0

(
t− z

c

))
V

(
z, t− z

c

)
+ c.c., (1)

where c stands for the velocity of light in vacuum. In the following we will use
also the Fourier transform Ṽ of the shape function

Ṽ (z, ω) =
1
2π

∫
exp(−i(ω − ω0)t′)V (z, t′)dt′, (2)

where t′ = t − z/c is the retarded time. Ṽ (z, ω) is usually related to the initial
Ṽ (0, ω) by

Ṽ (z, ω) = exp
(
−i(n− 1)ω

z

c

)
Ṽ (0, ω). (3)

The last relation may be thought as a definition of the complex refractive index n,
which is, in general, a function of ω and z. In the following, we will use both the
functions V (z, t) and Ṽ (z, ω) to define the mean Ō of any observable O in the
same manner we do in quantum mechanics, i.e.
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〈O〉 =
∫

V ∗(z, t)ÔtV (z, t)dt∫ |V (z, t)|2dt
(4)

or

〈O〉 =
∫

Ṽ ∗(z, ω)ÔωṼ (z, ω)dω∫ |V (z, ω)|2dω
, (5)

where the operators Ôt and Ôω are in the time and the frequency representation,
respectively. So the mean pulse time is given by

T (z) =
∫

V ∗(z, t)t′V (z, t′)dt′∫ |V (z, t′)|2dt′
+

z

c
(6)

or

T (z) =
−i

∫
Ṽ ∗(z, ω)∂Ṽ (z,ω)

∂ω dω∫ |V (z, ω)|2dω
+

z

c
=

z

c
Re

〈(
n + ω

dn

dω

)〉
. (7)

In fact, the time T (z) is the time required for transport the pulse energy averaged
over the pulse shape. For the symmetrical pulse it is identical with the time of the
pulse maximum propagation. Furthermore, our definition is more convenient for
the theoretical computations.

Thus the group velocity vg of the light averaged over the distance z,

vg =
z

T (z)− T (0)
, (8)

is also given as

vg =
c

Re
〈(

n + ω dn
dω

)〉 . (9)

The above formula differs from the one most often used in the literature in which
we average the denominator over the pulse shape instead of taking its value at
ω = ω0. We can also define the group velocity at a given distance z as

vg =
(

dT

dz

)−1

. (10)

However, we must have in mind that in the experiment we really measure the
transit time T (L) and thus the group velocity averaged over the length L of the
medium. Therefore, the definition (8) of the averaged group velocity is more
significant for the theoretical analysis of the pulse change in the course of the
propagation. The mean frequency 〈ω〉 can be calculated from the formula (5) or,
since ω−ω0 → i ∂

∂t , as the average of the time derivative of the pulse phase ϕ(z, t),
i.e.

〈ω〉 =
〈

∂ϕ(z, t)
∂t

〉
+ ω0. (11)

The frequency ω0 is often assumed to be the value of 〈ω〉 at z = 0. The phase
velocity we shall define as

vp = 〈ω〉/〈k〉, (12)
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with the mean value of the wave vector given by

〈k〉 = −∂〈ϕ〉
∂z

+
ω0

c
. (13)

The characteristic duration time of the pulse is defined as

∆T =
(〈

t′2
〉− 〈t′〉2

)1/2

=
[〈(

t− z

c

)2
〉
−

(〈
t− z

c

〉)2
]1/2

. (14)

The dispersion of the frequency,

∆ω =
√
〈ω2〉 − 〈ω〉2, (15)

is related to ∆T by the uncertainty relation

∆ω∆T ≥ 1/2. (16)
We may often assume that ∆ω ∼= 1/(2∆T ) since the pulse shape is approximately
Gaussian. When the frequency of the light is well tuned to the atomic transition
frequency, we may be tempted to use the complex refractive index n at the line
centre instead of the frequency averaging in formula (9). This seems to be well
justified in the limit of strong power broadening, i.e. when the Rabi frequency at
the pulse peak Ωmax satisfies the condition Ω2 À γγ1,2 where γ is the spontaneous
decay constant and γ1,2 gives the relaxation rate of the Raman coherence ρ1,2

component of the density matrix. In our calculations we have assumed γ1,2 equal
to 10−5γ, so that the frequency dependence of the refractive index is rather weak.
Unfortunately, as we shall see later on, this picture is sometimes oversimplified as
it does not account for all nonlinear effects in the two pulses mutual interaction and
the effect following the finite pulse time, i.e. the absorption on the front of the pulse
and the free induction decay. Moreover, it is customary to consider the refractive
index n(ω) and its derivative as a function of the probe pulse frequency ωp, which
is not justified when the nonlinear effects are important.

3. The atomic state description and the pulse propagation

In the recent paper [20] we have described the quantum interference effect
for the sodium D1 line with the hyperfine structure shown in Fig. 1. Furthermore,
we have investigated the steady state for the same system [21]. In the present
paper we are going to describe the propagation of both the coupling field and the
probe beams properly tuned so that their frequencies ωc and ωp are bound to the
condition ωp−ωc = ω2,1, which is usually assumed in the EIT investigations. The
two pulses in question, probe and coupling, are assumed to travel together. More-
over, in most cases we add with some delay the second coupling pulse so that the
restoring of the probe pulse can be checked. According to the standard procedure,
we shall describe the dressed atom state using the density matrix Liouville–von
Neumann equations as in [20]. However, these equations will be modified to ac-
count for the two-colour excitation by the coupling and probe beams in the similar
manner to that used in the paper of Zhu [22]. So, the interaction of the atom with
light has to be replaced by the two components with the frequency ωc and ωp,
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Fig. 1. The energy level diagram of the sodium atom. ωp and ωc stand for the probe and

coupling fields frequencies, respectively. ω2,1 = 1.772×1092π s−1, ω4,3 = 189×1062π s−1

and the spontaneous decay rate γ = 6.25× 107 s−1.

respectively. To simplify the description, we assume the coupling beam is exactly
tuned to the atomic transition frequency 2 → 3 while the probe beam is tuned
to the 1 → 3 transition except the case (b) in Fig. 3, in which both are detuned
by the same amount. The atomic states are described by the same twenty eight
components of the density matrix as in the papers [21] and [23]. The most rele-
vant are: the populations ni of all the four levels, two complex Hertzian (optical)
coherences ρ1,3 and ρ2,3, and the Raman coherence ρ1,2, which is responsible for
the coherent mixture of the lower states meant for the nonlinear effects in EIT,
light slowing down and restoring.

As far as the propagation is concerned, the relevant equations are the reduced
Maxwell equations for the radiation fields. We assume that the propagation of the
probe and coupling pulses can be described by separated equations, i.e.

∂Vp

∂z
= Ap

(
ρ1,3 −

√
5ρ1,4

)
, (17)

and
∂Vc

∂z
= Ac (ρ2,3 − ρ2,4) , (18)

where the parameters Ap, Ac depend on the atomic density and the transition
frequencies. The combined optical coherences on the right hand side of (17) and
(18) are proportional to the dipole moment for the transition frequency 1 → 3, 4
and 2 → 3, 4. We shall make use of the relative units in which the frequencies and
the relaxation rates are related to the spontaneous decay. So we shall replace the
pulse shape functions Vp and Vc by the relative Rabi frequencies Ωp and Ωc. The
distance z will be normalized to the Beer absorption length for the probe in the
weak field limit, which is of the order of 10−4 cm in a typical experiment.

4. The numerical results

The aim of our numerical calculations is to explore the physical mechanism
of the various phenomena observed when the two-colour pulsed light is travelling
through the sodium vapour. Attention is paid to the space dependence of the
group velocity, the light storage and the delay or the advancement of the pulsed
light. Our goal is to describe the propagation of co-propagating fields without the
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Fig. 2. The shape functions of the probe pulse and coupling fields at z = 0 for long

pulses.

commonly used adiabatic or the perturbation theory. We do not attempt to refer
to any specific experiments, although we assume that the probe field (p) and the
coupling field (c) are tuned as shown in Fig. 1. In the following we shall assume the
Gaussian shape of both pulses but with cut off the far wings, as shown in Fig. 2. We
consider some situations with initially Gaussian pulses but for different duration
times measured by ∆Tp and ∆Tc. The first situation, as shown in Fig. 2, is devoted
to pulses which are assumed to be long as compared with the spontaneous decay
time γ−1, while the second one is short, i.e., a nanosecond pulse. In all situations
we analyse the pulsed light impact on the state of the atom at z = 0. Particularly,
we calculate the populations, the dipole moments and the Raman coherence. We
may thus try to predict the change of the light pulse shape, its absorption and
the light storage effect, at least for small distances. In the following, we show the
pulse energy variation in the course of propagation as well as the mean pulse time,
and its duration characterizations.

4.1. On and off resonant long pulses propagation

In Figs. 3 to 6 we represent the results for long pulse (see Fig. 2), subdivided
into case (a), with both pulses tuned exactly as in Fig. 1, and case (b) with the
frequencies of both pulses shifted by 10γ (hereafter, the terms: case (a) and/or
case (b) will allways refer to these definitions). In both cases only the first level is
initially populated, since we have assumed the low temperature limit.

4.1.1. The impact of the atom at z = 0 for long pulses in connection to the delay
or the advancement, light storage, and EIT effect

The imaginary part of the dipole moment, as shown in Fig. 3 at z = 0, is a
good indication of the subsequent change of the propagating pulse shape. So we
may expect, in the case (a), that the front of the probe field is absorbed, while later
on, for t > 0, this field is enhanced. The coupling field behaves in the opposite way
as a result of the initial absence of the population n2 and the coherent coupling of
both pulses, characteristic of EIT. The net results are the high transparency and
delay of the probe field combined with the advancement of the coupling pulse. In
the case (b), the EIT effect is weaker, so that the absorption of the probe field is
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Fig. 3. The imaginary part of the dipole moment for the probe dp and coupling dc

fields, the real part of the Raman coherence ρ1,2 at z = 0. Case (a) — the detuning

∆p = ∆c = 0 and case (b) — ∆p = ∆c = 10γ.

much stronger than in the previous case. It is rather an unusual effect of increased
absorption for the off resonance light frequency. In both cases the restored field is
created at the expense of the second coupling pulse due to the Raman coherence.
The Raman coherence for the case (a) in Fig. 3, shows a maximum at t = 0,
i.e., for the maximal values of both pulses intensities, and reaches the value –0.04
after the pulses are switched off. In the case (b) the Raman coherence increases
in time up to the value –0.175 after the pulse. This means that the coherent
interference effects for both pulses, and therefore the creation of the restored field,
are more intense than in the case of exactly tuned fields. Quite obviously, the
Raman coherence is reduced after the second pulse is switched on, so that the
restored field is created.

4.1.2. The space dependence of energy and light storing
The electromagnetically induced transparency is demonstrated in Fig. 4,

where the probe field intensity, in the case (a), slowly decreases with the distance,
while the coupling field energy rather increases for z > 50. The restored pulse
gains the energy at the expense of the second coupling pulse, reaching maximum
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Fig. 4. The relative energies for the probe Ep(z), the first coupling Ec,I, the second

coupling Ec,II, and the restoring field Erest as a function of z for the cases (a) and (b).

The distance is measured in terms of the Beer length.

for relatively long distance. The unexpected effect is that, for long distance, the
restored field might be much more intense than the probe field. In the case (b),
shown in Fig. 4b, the detuning of both pulses results in the stronger absorption
of the probe field and fast increase in the coupling field intensity. The maximum
of the restored field is also reached at relatively small distance z ≈ 20, and its
intensity is smaller than in the previous case. The obvious explanation is the
detuning of the second coupling pulse.

4.1.3. The space dependence of delay and group velocity for long pulses
The time delay of the probe field, as shown in Fig. 5, for the case (a), is

quite remarkable. The coupling field is, in this case, initially advanced, reaching
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Fig. 5. The delay or the advancement of the probe field 〈Tp〉 and the first coupling

field 〈Tc〉, the width ∆Tp and the uncertainty product for the probe field in the course

of propagation. The continuous line is for the case (a) and the dashed one is for the

case (b). The time is measured in µ seconds.

Fig. 6. The group velocity as a function of z for the case (a). The continuous line for

the smooth relation (10) and the dashed line for the space averaged velocity, relation (8).

its maximum for z ∼= 50. In both cases the group velocity depends on the distance.
In the case (b), our calculation indicates that the probe field is slightly advanced
for small z, although in the most important region the probe pulse is delayed.
The coupling field is slightly advanced. In this case the group velocity is strongly
dependent on z. The probe pulse shape remains Gaussian for the case (a), as it
follows from the unusually small deviation of the uncertainty product ∆Tp∆ωp

from the one half value. The width of the pulse decreases with z. On the contrary,
in the case (b) the probe pulse changes its shape in the course of propagation. It
seems worth stressing that the dependence of the group velocity on the distance
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z cannot be neglected even for relatively smooth delay of the probe field in the
course of the propagation (see Fig. 6 for the case (a)). Thus, we may expect that
the experimentally measured group velocity depends on the length L, that the
pulse has to travel.

4.2. The short pulse propagation
As for some examples of the short pulse, we choose the initially Gaussian

pulses presented in Fig. 7a and relatively weaker than the former one as depicted
in Fig. 7b.

Fig. 7. The shape functions of the probe pulse and coupling field at z = 0 for short

duration pulses. Time is measured in nanoseconds. On the left part (a) we represent the

strong field case. On the right part (b) we represent a less intense situation. A delayed

component to the coupling field is added to check the restoring field.

4.2.1. Intense pulse delays with splitting
For intense pulses, the dependence of the populations on time (Fig. 8) shows

that the atom behaves like a three-level system, i.e., both the third and the fourth

Fig. 8. The population of the hf levels at z = 0 for strong nanosecond pulses shown in

Fig. 7a, n1(t0) = 1.
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levels are coupled to the ground state levels by the probe and coupling fields.
Moreover, the combined pulse, probe and coupling together, behaves like a pulse
with the initial area above the 4π value. We have reached this conclusion after
comparing our results with those presented in paper [24], where the state of the
atom excited by the pulses with various area tuned to the S1/2 − P1/2 transition
has been analysed. We are not able, however, to define the field area in clear
fashion for the two-colour pulses. We may only estimate roughly the probe pulse
area as 5π. The absorption in the front of the probe pulse and the free induction
decay after the pulse result in the delay are shown in Fig. 9. The delay and change
in the pulse shape for the coupling field are very small. However, the uncertainty
product for the probe field increases, since the pulse is split into two parts. The
pulse is quite justifiably defined for the probe field, at a given z and decreases
when the pulse propagate. The transparency of both pulses is extremely high,
as shown in Fig. 9. The energy of the coupling pulse increases in the course of
the propagation. Quite obviously, the EIT must play an important role in this
case, since the transparency is much more conspicuous than in the case of single

Fig. 9. The delay, the uncertainty product, the relative energies for probe and the first

coupling field, and the shape functions for probe pulse at z = 53, z = 199. Time is

measured in nanoseconds. Case (a) of Fig. 7 is considered.
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pulse with 4π area (compared with the results in [24]). The splitting of the probe
pulse is shown in Fig. 9, for z = 53, while, for z = 199, one of the split pulse
components is fading away. Apparently, the 4π is going to transfer into 2π pulse.
The coupling field is practically unchanged. We have found that the populations
for z = 199 oscillate like 4π pulses. So, we may conclude that the combined probe
and coupling field behave like the 5π (at z = 0) pulse in the work of Miklaszewski
and Fiutak [24], but in a remarkably more stable way. On the other hand, some
caution is required since the field area cannot be precisely defined.

4.2.2. Short pulse propagation with light storage
The pulses presented in Fig. 7b are as short as the previous ones but less

intense. The second coupling pulse is added to test the probe pulse restoring
effect. The populations at z = 0, given in Fig. 10, are reshaped during the pulse,
by the absorption of the front part of the probe field and the subsequent induced
emission of the coupling field. Later on, after the pulse, the spontaneous emission
dominates until the second coupling pulse is switched on. The electric dipole
moments corresponding to the probe field (dp) and the coupling field (dc) are
oscillating with the frequency ∆ωu, as shown in Fig. 10. Their imaginary parts

Fig. 10. The populations, the imaginary part of the dipole moment, and the Raman

coherence at z = 0 for the shape pulses presented in Fig. 7b, n1(t0) = 1.
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Fig. 11. The space dependence of the relative energies of the pulses as well as the delay

time of the probe pulse and its shape at z = 17. The time is measured in nanoseconds.

indicate that the absorption of the probe field and the second coupling pulse are
quite big, while the first coupling pulse increases its energy with the distance at
the expense of the probe field. The Raman coherence presented in Fig. 10 is quite
big, so we may expect the strong field restoring effect. The strong absorption at
the front results in the delay of the probe pulse (see Fig. 11) and in its broadening.
The shape of the coupling field does not change appreciably and the delay time is
small. Although, the shape of the probe field is changed, the deviation from the
initial Gaussian shape is small. The energy changes with the distance, presented in
Fig. 11, are rather smooth. The decrease in the probe pulse energy is accompanied
by the increase in the coupling pulse energy, so that the total energy of both pulses
decreases quite slowly. The pulse shape at z = 17, presented in Fig. 11, remains
nearly unchanged for both pulses, except the restored pulse, which is created at
the expense of the second coupling pulse.

5. Conclusions

The definitions of the important characteristics of the pulse proposed in the
present paper have been proved to be very useful. We have particularly in mind
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the group velocity, the mean deviation of the pulse time ∆T , and of frequency ∆ω.
We have shown that the group velocity, defined as the ratio of the medium length L

to the transit time T (L), is related to the refraction index in the standard way,
except that the average over the pulse is taken into account. In spite of that,
our results differ meaningfully from the usual description, which does not account
properly for the time and distance dependence of the light pulse. Particularly, the
dependence of the pulse duration is proved to be very important for all features
of the light propagation. The transit time is, as a rule, of the same order as
the pulse duration. This is to be expected, since the distortion of both pulses
results from their cooperation when they overlap. More precisely, the pulse is
modified either by absorption or by the induced Raman scattering, controlled by
the Raman coherence ρ1,2, and the induced emission without the EIT effect. The
best example of the Raman scattering action is the coincidence of the populations
and the corresponding Raman coherence ρ1,2. For the nanosecond pulses, the
stimulated Raman and induced emissions are important. In fact, the time delay
of the 2nπ pulses is possible for a single monochromatic pulse (cf. [24–26]) and
so is the prolonged propagation length. However, the cooperation of both pulses
seems to enhance appreciably both effects. The successive result, which seems to
be of the same importance, is the nonlinear dependence of the transit time on
the propagation length (see Figs. 5, 9, 11) that is why the group velocity depends
on z (Fig. 6). This dependence shows a transition from superluminal propagation,
where the group velocity is a negative finite or infinite, to subluminal (see Fig. 5).

As far as the storage of light is concerned, we have shown that the restoring
field for short pulses is created mainly at the expense of the second coupling field.

Coming to the end of our discussions, let us turn our attention to the uncer-
tainty product ∆ω∆T , which is equal one half for the Gaussian pulse. The results
shown in Fig. 5 confirm the commonly accepted opinion that deviations from the
Gaussian shape are small, except for long distances, where the pulse is very weak.
The strong deviation from the Gaussian type for nanosecond pulse (Fig. 9) follows
from the splitting of the 4π pulse into two 2π pulses.
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