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Anderson localization of electromagnetic waves in random arrays of di-

electric cylinders confined within a planar metallic waveguide is studied. The

disordered dielectric medium is modeled by a system of randomly distributed

2D electric dipoles. An effective theoretical approach based on the method

of images is developed. A clear distinction between isolated localized waves

(which exist in finite media) and the band of localized waves (which appears

only in the limit of the infinite medium) is presented. The Anderson tran-

sition emerging in the limit of an infinite medium is observed both in finite

size scaling analysis of transmission and in the properties of the spectra of

some random matrices. The sound physical interpretation of the obtained

results suggests deeper insight into the existing experimental and theoretical

work.

PACS numbers: 42.25.Fx, 42.25.Hz, 72.10.Fk, 78.20.Ci

1. Introduction

The concept of the Anderson localization originates from the studies of elec-
tron transport in disordered solids. This phenomenon is based completely on
interference effects in multiple scattering of electron wave functions by a random
potential. Several generalizations of the Anderson localization to other types of
waves have been proposed. A convincing experimental demonstration that the
Anderson localization of electromagnetic waves is possible in three-dimensional
disordered dielectric structures has been given recently [1]. The strongly scat-
tering medium has been provided by semiconductor powders with a very large
refractive index. By decreasing the average particle size it was possible to observe
a clear transition from linear scaling of transmission (T ∝ L−1) to an exponential
decay (T ∝ e−L/ξ). Some localization effects have been also reported in previ-
ous experiments on microwave localization in copper tubes filled with metallic
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and dielectric spheres [2]. However, the latter experiments were plagued by large
absorption, which makes the interpretation of the data quite complicated.

Another experiment on microwave localization has been performed in a two-
-dimensional medium [3]. The scattering chamber was set up as a collection of
dielectric cylinders randomly placed between two parallel aluminum plates on half
the sites of a square lattice. These authors attributed the observed sharp peaks of
transmission to the existence of localized modes and measured the energy density
of the electromagnetic field localized by their random structures.

In this paper we present a simple model of the Anderson localization. It is
applied to a problem of electromagnetic wave propagation in a disordered quasi
one-dimensional medium. The random system under consideration consists of
dielectric cylinders placed inside a metallic planar waveguide. The Anderson tran-
sition emerging in the limit of an infinite medium is observed both in finite size
scaling analysis of transmission and in the properties of the spectra of some random
matrices.

2. Basic assumptions

In the following we study the properties of the stationary solutions of the
Maxwell equations in two-dimensional media consisting of randomly placed parallel
dielectric cylinders of infinite height (i.e., very long as compared to the wavelength
of the electromagnetic field). This means that one, say (y), out of three dimensions
is translationally invariant and only the remaining two (x, z) are random. The
main advantage of this two-dimensional approximation is that we can use the
scalar theory of electromagnetic waves [4]:

E(r, t) = Re
[
eyE(x, z)e−iωt

]
. (1)

Consequently, the polarization of the medium takes the form

P (r, t) = Re
[
eyP(x, z)e−iωt

]
. (2)

Localization of electromagnetic waves in disordered 2D media is usually stud-
ied experimentally in microstructures consisting of dielectric cylinders with diam-
eters and mutual distances being comparable to the wavelength [3]. However, it
seems to be a reasonable assumption that what really counts for the basic features
of localization is the scattering cross-section and not the real geometrical size of
the scatterer itself. Therefore we will represent the dielectric cylinders located at
the points (xa, za) by single 2D electric dipoles

P(x, z) =
N∑

a=1

paδ(2)(x− xa, z − za). (3)

It should be stressed that the boundary conditions considered in this paper are
different from those encountered in the experiment of Ref. [3]. To minimize the
effect of the waves reflected off the edges of the scattering chamber, its perimeter
was lined with a layer of microwave absorber. Therefore, to model that particular
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experiment, it is appropriate to use the free space boundary conditions (as we did
in our previous papers [4, 5]).

3. Planar waveguide

In the present model we place the disordered dielectric medium between two
infinite, perfectly conducting mirrors described by the equations x = 0 and x = d.
Thus we will consider the case where the cylinders are oriented parallel to the
mirrors. For simplicity our discussion will be restricted to TE modes polarized
along the y axis only.

The electric field of the electromagnetic wave incident on the cylinders

E(0)(x, z) =
M∑

m=1

ιmE(m)(x, z), (4)

may be expanded into the guided modes of the waveguide [6]:

E(m)(x, z) =
2√
βmd

sin(αmx)eiβmz , (5)

where the propagation constants are given by

αm =
π

d
n, βm =

√
k2 − α2

m. (6)

The total field that can be measured far from the cylinders is fully described by
the reflection ρm and transmission τm coefficients of all guided modes

E(x, z) =
M∑

m=1

ιmE(m)(x, z) +
M∑

m=1

ρmE(m)∗(x, z) for z → −∞, (7)

E(x, z) =
M∑

m=1

τmE(m)(x, z) for z → +∞. (8)

Using the Lorentz theorem and repeating the straightforward calculations (see,
e.g., [6]) we easily arrive at the following expressions determining the transmission
coefficients:

τm = ιm + iπk2
N∑

a=1

paE(m)∗(xa, za), (9)

and the reflection coefficients

ρm = iπk2
N∑

a=1

paE(m)(xa, za), (10)

for given dipole moments pa. In the following sections we will relate pa to the
values of the incident field calculated at the positions of the cylinders E(0)(xa, za).

4. Method of images

A simple way to take into account the boundary conditions of parallel mirrors
and their influence on the electromagnetic field is to use the method of images.
This technique has been used, i.e., in quantum electrodynamics (QED) calculations
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of spontaneous emission in cavities [7, 8]. To reproduce the correct boundary
conditions on the radiation field of each cylinder (3) the mirrors are replaced by
an array of image cylinders whose phases alternate in sign

P(x, z) =
N∑

a=1

∞∑

j=−∞
(−1)jpaδ(2)(x− x(j)

a , z − za), (11)

where

x(j)
a = (−1)jxa + jd. (12)

Thus a finite system of dielectric cylinders (3) placed within a metallic waveguide is
fully equivalent to an infinite system of cylinders (11) forming a slab in a free space.
This fact allows us to utilize some results from our previous paper concerning
dielectric cylinders in free space [4].

5. Breit–Wigner scatterers

The cylinders necessarily have an internal structure. For example to model
a simple scattering process with one internal Breit–Wigner type resonance one
can use the Breit–Wigner model of scattering. This gives the following form of
the coupling between the dipole moment pa and the electric field incident on the
cylinder E ′(xa, za):

iπk2pa =
γ0

(ω − ω0) + iγ0
E ′(xa, za). (13)

The total scattering cross-section σ [4] takes then the familiar Lorentzian form

kσ =
4γ2

0

(ω − ω0)2 + γ2
0

. (14)

6. Multiple scattering

In the case of a confined medium the field acting on the a-th cylinder
E ′(xa, za) from Eq. (13) is the sum of the incident guided mode E(0), which obeys
the Maxwell equations in an empty waveguide, and waves scattered by all other
cylinders and by all images

E ′(xa, za) = E(0)(xa, za) +
γ0

(ω − ω0)+iγ0

N∑

b=1

GabE ′(xb, zb), a = 1, . . . N. (15)

Thus, in the present model the G matrix from Eq. (15) needs to be defined dif-
ferently than in Ref. [4]:

iπGab = 2
∑

ρ
(j)
ab
6=0

(−1)jK0(−ikρ
(j)
ab ), (16)

where

ρ
(j)
ab =

√
(xa − x

(j)
b )2 + (za − zb)2, (17)

denotes the distance between the a-th cylinder and the j-th image of the b-th
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cylinder and K0 is the modified Bessel function of the second kind. Let us note
that summation in Eq. (16) is performed over all j, for which ρ

(j)
ab 6= 0.

The system of linear Eqs. (15) fully determines the field acting on each
cylinder E ′(xa, za) for a given field of the guided mode E(0)(xa, za) incident on
the system. Analogous relationships between the stationary outgoing wave and
the stationary incoming wave are known in the general scattering theory as the
Lippmann–Schwinger equations [9]. If we solve Eqs. (15) and use Eqs. (13) to find
pa, then we are able to find the transmission and reflection coefficients given by
Eqs. (9) and (10).

7. Localized waves

By definition, an electromagnetic wave is localized in a certain region of
space if its magnitude is (at least) exponentially decaying in any direction from
this region. We will show now that electromagnetic waves localized in the system
of dielectric cylinders placed in a planar metallic waveguide correspond to nonzero
solutions E ′l(xa, za) 6= 0 of Eqs. (15) for the incoming wave equal to zero, i.e.,
E(0)(x, z) ≡ 0. Let us note that we added an index l which labels the localized
waves.

Indeed, let us suppose that the field is exponentially localized. This means
that there are no guided modes in the radiation field. Therefore (as shown in the
previous section) Eq. (24) holds. Using Eq. (13) we see that the vector formed by
the values of the field acting on the cylinders is orthogonal to the vector formed
by the values of incident field calculated at the positions of the cylinders

N∑
a=1

E ′l(xa, za)E(0)∗(xa, za) = 0. (18)

But simultaneously E ′l (xa, za) is a solution of a system of linear Eqs. (15) where
E(0)(xa, za) is the right-hand side. Therefore E ′l(xa, za) is also a solution of
Eqs. (15) with E(0)(xa, za) ≡ 0.

The proof works also the other way round. Let us suppose that E ′l (xa, za)
is a solution of Eqs. (15) for E(0)(xa, za) ≡ 0. As the considered medium is
non-dissipative, the time average energy stream integrated over a closed surface
surrounding it must vanish. This means that there are again no guided modes
in the radiation field (which in the case E(0)(x, z) ≡ 0 is equal to the total field).
Therefore Eq. (24) holds and the wave is localized.

8. Eigenproblem

Let us note that for the incoming wave equal to zero, i.e., E(0)(x, z) ≡ 0, the
system of Eqs. (15) is equivalent to the eigenproblem for the G matrix

N∑

b=1

GabE ′l (xb, zb) = λlE ′l(xa, za), (19)

where
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Imλl =
ωl − ω

γ0
. (20)

Let us stress that Eq. (19) can be fulfilled only if the real part of an eigenvalue
satisfies

Reλl = −1. (21)
Therefore only those eigenvectors E ′l(xa, za) of the G matrix which correspond to
the eigenvalues λl satisfying the condition (21) may be related to localized waves.
Moreover, those waves can exist only for discrete frequencies ωl given by Eq. (20).
As discussed in the previous sections they are the same values of ω for which the
transmission is equal to unity.

9. Resonance poles

Localized waves exist only if the geometry of the system (i.e., the positions of
the cylinders and/or the thickness of the waveguide) meets certain specific require-
ments. However, it is always possible to look for resonances. A way of dealing with
resonances in our formalism is to look for resonance poles in the complex frequency
plane. Resonance poles are complex frequencies for which it is possible to solve
Eqs. (15) as homogeneous equations, i.e., for the incoming wave E ′(xa, za) equal
to zero. The real and imaginary parts of the corresponding resonance frequencies
determine then the positions ω and widths γ of the resonances.

In the particular case of the Breit–Wigner type scatterers the real and imag-
inary parts of the eigenvalues of the G matrix have a nice physical interpretation:
they are equal to the relative widths (γ − γ0)/γ0 and positions (ω− ω0)/γ0 of the
resonances. Indeed, using the explicit form of the complex frequency ω → ω − iγ
and comparing Eqs. (15) and (19) we get

ω − iγ = ω0 − iγ0[1 + λ(ω − iγ)]. (22)
This system of two coupled nonlinear equations determines the values of the res-
onance poles ω − iγ. In many physically interesting cases Eqs. (22) can be solved
numerically by iteration.

Most localization experiments are performed in the range of optical or mi-
crowave frequencies. In this case usually γ0/ω0 ¿ 1. For instance in solving it up
to the first order in γ0 one substitutes λ(ω0) for λ(ω − iΓ ) getting

Reλ(ω0) ' γ − γ0

γ0
, Imλ(ω0) ' ω − ω0

γ0
. (23)

10. Single scattering

Let us begin by considering a single dielectric cylinder placed in a metallic
waveguide. The waveguide may introduce its own phase shift depending on the
position of the cylinder with respect to its walls. This results in changing the
width and position of the transmission and reflection resonance.



Anderson Localization of Electromagnetic Waves . . . 115

Indeed, as an example let us consider a cylinder placed between the mirrors
separated by a distance kd = 3π/2. We have calculated numerically the corre-
sponding 1 × 1 G matrix (16). The images of the cylinder from Eq. (11) were
summed from j = −50000 to j = 50000. The resulting “spectrum” (λ = G11) of
the G matrix is plotted in Fig. 1b. We see that as opposed to the free-space case
(G11 = 0) it is nonzero.

Fig. 1. (a) Reflection R of a single dielectric cylinder placed in a planar metallic wave-

guide plotted as a function of the frequency ω and (b) the corresponding spectrum of

the G matrix. The dashed line corresponds to the transmission in a “free space” case.

According to Eqs. (23) the eigenvalues λ can be considered as a first-order
approximation (in γ0/ω0) to the positions of the resonance poles in the system.
Thus if λ 6= 0 then ω 6= ω0, γ 6= γ0. To check if the shape of the resonance has
really changed in Fig. 1a we have plotted as a solid line the reflection coefficient
R = |ρ1|2. The dashed line in the same plot corresponds to the “free space” case
λ = 0.

11. Collective resonances

In the next step in Figs. 2 and 3 we plot the reflection R of the systems of
N = 10, 100 cylinders as a function of the frequency ω. In the same plots we have
also the corresponding approximate values of the resonance poles given by the
spectrum of the G matrix. The cylinders were distributed randomly with constant
uniform density n = 1 cylinder per wavelength squared. Therefore for each N the
size of the system was proportional to the number of cylinders L ∝ N .

We have seen that in the case N = 1 the incident wave was totally reflected
for a single value of ω = ω̃. Let us note that not necessarily ω̃ = ω0, and therefore
for this value of ω the total scattering cross-section σ of an individual dielectric
cylinder (14) does not approach its maximal value. However, for systems contain-
ing N = 10 and N = 100 the entire regions of the values of frequencies ω exist for
which R ' 1. They are separated by narrow maxima of transmission. Moreover,
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Fig. 2. (a) Reflection R of a system of N = 10 dielectric cylinders placed randomly in

a planar metallic waveguide plotted as a function of the frequency ω. (b) First-order

approximations to the resonance poles in the system given by the spectrum λ of the

corresponding G matrix.

Fig. 3. (a) Reflection R of a system of N = 100 dielectric cylinders placed randomly

in a planar metallic waveguide plotted as a function of the frequency ω. (b) First-order

approximations to the resonance poles in the system given by the spectrum λ of the

corresponding G matrix.

inspection of Figs. 2 and 3 suggests that in the limit N →∞ the number of these
maxima increases and simultaneously they became narrower and sharper. There-
fore we may expect that for sufficiently large N the incident waves will be totally
reflected for almost any ω except the discrete set ω = ωl for which the reflection is
close to unity. Physically speaking this means that different realizations of suffi-
ciently large system of randomly placed cylinders are hardly distinguishable from
each other by a transmission experiment.

It follows from inspection of Eqs. (9) and (10) that the maximum of transmis-
sion T =

∑
m |τm|2 = 1 (and minimum of reflection R =

∑
m |ρm|2 = 0, because

the medium is non-dissipative) corresponds to the case when the polarization of
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the medium fulfills the following condition:
N∑

a=1

paE(0)∗(xa, za) =
N∑

a=1

paE(0)(xa, za) = 0 for m = 1, . . .M. (24)

This means that in the expansion of the field radiated by the medium into wave-
guide modes the coefficients of near all guided modes Eq. (5) vanish. Therefore the
radiated field consists only of evanescent modes with imaginary propagation con-
stants βm and thus it is exponentially localized in the vicinity of the medium. In
the next section we will show that such a field can exist also without any incident
wave and therefore represents a truly localized wave.

12. Anderson localization

Let us note that in finite dielectric media no localized states are supported
by Maxwell’s equations in two dimensions [4]. However, this is not the case with
confined media, where localized waves do exist even in finite media. Therefore a
clear distinction between localized waves with isolated frequencies and the dense
band of localized waves (due to the Anderson localization) is needed. We show
now that this distinction may be provided by investigation of a phase transition
which occurs in the limit of N →∞ in the spectra of Gab matrices corresponding
to systems of randomly distributed dielectric cylinders.

To support this statement let us recall Figs. 2 and 3. We have plotted
there the spectra λ of a G matrix (diagonalized numerically) corresponding to
certain specific configurations of N = 10 and N = 100 cylinders placed randomly
with the uniform density n = 1 cylinder per wavelength squared. We see that
already in the case of N = 10 quite a lot of eigenvalues are located near the
Reλ = −1 axis. This tendency is more and more pronounced with increasing size
of the system measured by N . This is a universal property of 2D G matrices, not
restricted to this specific realization of the system only. To prove these statements
we diagonalize numerically the G matrix (16) for 102 different distributions of
N = 100 cylinders. Then we construct two-dimensional histogram of eigenvalues λ

from all distributions. It approximates the corresponding probability distribution
P (λ) which is normalized in the standard way

∫
d2λP (λ) = 1. In Fig. 4 we have

the surface plot of the function P (λ). It clearly shows that for all configurations
(without, may be, a set of zero measure) most eigenvalues are located near the
Reλ = −1 axis.

Our numerical investigations indicate that in the limit of an infinite medium,
the probability distribution under consideration will tend to the delta function in
the real part

lim
N→∞

P (λ) = δ(Reλ + 1)f(Imλ). (25)

This means that in this limit for almost any random distribution of the cylinders,
an infinite number of eigenvalues satisfies the condition Eq. (21). It is therefore
reasonable to expect that in the case of a random and infinite system a countable
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Fig. 4. (a) Probability P (R) of measuring a reflection R at frequency ω. (b) Density of

eigenvalues P (λ) of the matrix G calculated from 102 distributions of N = 100 cylinders

calculated for the same systems. The similarity is striking.

set of frequencies ωl corresponding to localized waves becomes dense in some finite
interval. But it is always difficult to separate such frequencies from frequencies
which may be arbitrarily near and physically the spectrum is always a coarse-
-grained object. Therefore in the limit of an infinite medium an entire band of
spatially localized electromagnetic waves appears.

In addition in Fig. 4 we have the probability P (R) of measuring a reflection
R at frequency ω calculated for the same systems of cylinders. This distribu-
tion is very similar to the distribution of eigenvalues. Thus incident waves are
totally reflected for “almost any” frequency from the band of localized waves, i.e.,
except the discrete set (of zero measure) for which the transmission is equal to
unity. This provides a connection between the phenomenon of localization and
a dramatic inhibition of the propagation of electromagnetic waves in a spatially
random dielectric medium.

13. Summary

In summary, we have developed a simple yet reasonably realistic theoret-
ical approach to the Anderson localization of electromagnetic waves. A two-
-dimensional dielectric medium consisting of N dielectric cylinders confined within
a planar metallic waveguide has been studied. Several particular cases may be con-
sidered (kd = π is the cut-off thickness of the waveguide). For N = 0 and kd < π

there are no guided modes in the waveguide as well as there are no localized waves.
This case is analogous to the electronic band gap in a solid. If N > 0 and kd < π,
there are still no guided modes in the waveguide but localized waves can appear
for any distribution of the cylinders. It is again analogous to the solid state physics
situation where isolated perturbations of the periodicity of crystals (like impuri-
ties or lattice defects) can lead to the formation of localized electronic states with
energies within the forbidden band. Another possibility corresponds to N = 0
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and kd > π. In this case there are guided modes but the system supports no
localized waves. This is very similar to the conductance band in solids. Guided
modes correspond to extended electronic states described by the Bloch functions.
In this paper we perform a detailed study of the regime where N > 0 and kd > π.
For this range of parameters there are both the guided modes and the resonances
of transmission. Isolated localized waves can be seen for certain distributions of
the cylinders. The signs of the Anderson localization emerging in the limit of
an infinite medium can be observed both in analysis of transmission and in the
properties of the spectra of certain random matrices. Eventually we will consider
a limiting case of N → ∞ and kd > π. It turns out that in this case the guided
modes no longer exist in the waveguide. Instead a band of localized waves will
be formed for any distribution of the cylinders. It is an interesting analog of the
Anderson localization in noncrystalline solids such as amorphous semiconductors
or disordered metals.
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