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We study experimentally nodal domains of wave functions (electric field

distributions) lying in the regime of Breit–Wigner ergodicity in the chaotic

microwave half-circular ray-splitting rough billiard. Using the rough billiard

without ray-splitting properties we also study the wave functions lying in the

regime of Shnirelman ergodicity. The wave functions ΨN of the ray-splitting

billiard were measured up to the level number N = 204. In the case of the

rough billiard without ray-splitting properties, the wave functions were mea-

sured up to N = 435. We show that in the regime of Breit–Wigner ergodicity

most of wave functions are delocalized in the n, l basis. In the regime of

Shnirelman ergodicity wave functions are homogeneously distributed over

the whole energy surface. For such wave functions, lying both in the regimes

of Breit–Wigner and Shnirelman ergodicity, the dependence of the number

of nodal domains ℵN on the level number N was found. We show that in

the regimes of Breit–Wigner and Shnirelman ergodicity least squares fits

of the experimental data reveal the numbers of nodal domains that in the

asymptotic limit N →∞ coincide within the error limits with the theoreti-

cal prediction ℵN/N ' 0.062. Finally, we demonstrate that the signed area

distribution ΣA can be used as a useful criterion of quantum chaos.

PACS numbers: 05.45.Mt, 05.45.Df

1. Introduction

Distribution of nodal domains of real wave functions Ψ(x, y) in 2D quantum
systems (billiards) have been considered in recent theoretical papers by Blum et
al. [1] and Bogomolny and Schmit [2]. Nodal lines Ψ(x, y) = 0 divide a wave
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function Ψ(x, y) into nodal domains, regions with definite signs. Blum et al. [1]
have shown that the distributions of nodal domains are different for systems with
integrable and chaotic underlying classical dynamics. Thus a new criterion, not
directly related to spectral statistics, of quantum chaos was provided. Bogomolny
and Schmit [2] have proposed a percolation-like model to describe properties of
the nodal domains of generic chaotic system and have shown that the distribution
of nodal domains of such systems is universal.

The first experimental investigation of nodal domains of wave functions lying
in the regime of Shnirelman ergodicity in the chaotic microwave rough billiard
without ray-splitting has been reported by Savytskyy et al. [3].

In this paper we present the experimental investigations of nodal domains
of wave functions of the chaotic microwave rough billiards without and with ray-
-splitting phenomena. Ray-splitting systems are a new class of chaotic systems in
which the underlying classical mechanics is non-deterministic and non-Newtonian
[4–7]. In ray-splitting systems waves which encounter a discontinuity in the prop-
agation medium split into two or more rays travelling usually away from the dis-
continuity. Ray-splitting occurs in many fields of physics, whenever the wave
length is large in comparison with the range over which the potential changes. A
well-known example of ray-splitting in optics is reflection and refraction of light
entering a dielectric medium. A very useful model systems for the investigation of
ray-splitting phenomena are microwave cavities with dielectric inserts [5, 8–10].

Throughout this paper we use the following name convention: billiards with
ray-splitting are called RS billiards, billiards without ray-splitting properties are
called no-RS billiards.

In the case of RS rough billiard we focus our attention on the regime of
Breit–Wigner ergodicity. However, for no-RS rough billiard we also consider the
regime of Shnirelman ergodicity.

In both cases the dependence of the number of nodal domains ℵN on the level
number N was found. For this purpose we used a new method of the reconstruction
of wave functions introduced by Savytskyy and Sirko [11]. In the case of the half-
-circular microwave RS rough billiard and no-RS rough billiard this method allowed
for the reconstruction of wave functions with the level numbers N ≤ 204 and
N ≤ 435, respectively.

2. Experiment

In the experiment we use thin (height h = 8 mm), rough, made of aluminium
half-circular microwave cavities (Fig. 1), which due to the equivalence between
the Schrödinger equation and the Helmholtz equation [7, 12] simulate quantum
billiards. The rough RS billiard is simulated by the microwave RS cavity with
the dielectric (Teflon) insert of radius Rd = 8.465 cm (see Fig. 1). The cut-
off frequencies are νc = c/2ηh ' 13.1 GHz and νc = c/2h ' 18.7 GHz for
the RS and no-RS billiards, respectively. c is the speed of light and η = 1.425
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is the index of refraction of the Teflon insert. The cavity sidewalls consist of
2 segments. The rough segment 1 is described by the radius function R(θ) =
R0 +

∑M
m=2 am sin(mθ + φm), where for the RS rough billiard the mean radius

R0 = 20.0 cm, M = 20, am and φm are uniformly distributed on [0.084, 0.091] cm
and [0, 2π], respectively, and 0 ≤ θ < π. In the case of the no-RS billiard the
mean radius R0 = 20.0 cm, M = 20, am and φm are uniformly distributed on
[0.269, 0.297] cm and [0, 2π], respectively, with 0 ≤ θ < π. The half-circular
geometry of the cavities is very suitable because it allows one to exclude nearly
degenerate low-level eigenstates [13, 14]. It also simplifies the measurements of
the electric field distribution inside the billiard.

Fig. 1. (a) Sketch of the chaotic half-circular microwave ray-splitting rough billiard in

the xy plane. Dimensions are given in cm. The cavity sidewalls are marked by 1 and 2

(see the text). Squared wave functions |ΨN (Rc, θ)|2 were evaluated on a half-circle of

fixed radius Rc = 19.25 cm. The dielectric Teflon insert of radius Rd = 8.465 cm was

placed inside the cavity. Billiard’s rough boundary Γ is marked with the bold line.

(b) The chaotic half-circular microwave no-RS rough billiard in the xy plane. Squared

wave functions |ΨN (Rc, θ)|2 were evaluated on a half-circle of fixed radius Rc = 17.5 cm.

The roughness of a billiard, which may be characterized by the function
k(θ) = (dR/dθ)/R0 [15], determines its dynamics and other properties. The
roughness parameters k̃ defined as the angle average of the function k(θ) were for
the RS and no-RS billiards k̃ = (〈k2(θ)〉θ)1/2 ' 0.200 and 0.488, respectively. In
such billiards the dynamics is diffusive in orbital momentum due to collisions with
the rough boundary because the roughness parameter k̃ is much larger than the
chaos border parameter kc = M−5/2 = 0.00056 [15]. The eigenstates of a billiard
are localized [16] for the level number N < N e = 1/128k̃4. The border of Breit–
Wigner regime is given by NW = M2/48k̃2. It means that between N e < N < NW

Breit−Wigner ergodicity [17] ought to be observed and for N > NW Shnirelman
ergodicity should emerge. In the regime of Shnirelman ergodicity wave functions
have to be uniformly spread out in the billiard [18]. The borders in the billiards
under consideration are the following: for the RS billiard Ne = 5 and NW = 208;
for the no-RS billiard Ne = 1 and NW = 35.
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We determine wave functions using a method described in [11], which is
based on the measurements of the intensity of the electric field |EN (Rc, θ)|2 on
a half-circle of a fixed radius Rc (see Fig. 1) by the perturbation technique and
construction of “trial functions”.

In the perturbation technique [19–22] a small perturber is introduced inside
the cavity to alter its resonant frequency according to

ν − νN = νN (aB2
N − bE2

N ), (1)
where νN is the Nth resonant frequency of the unperturbed cavity, a and b are
geometrical factors. Equation (1) can be used to evaluate the square of electric field
EN only when the term containing magnetic field BN may be neglected. A small
perturber, a piece of metallic pin (3.0 mm in length and 0.25 mm in diameter) was
used in order to minimize the influence of BN on the frequency shift ν − νN . The
perturber was attached to the line hidden in the groove (0.4 mm wide, 1.0 mm
deep) made in the cavity’s bottom wall along the half-circle of radius Rc and moved
by the stepper motor. The application of such a small pin perturber limited the
largest positive frequency shifts to the uncertainty of frequency shift measurements
(15 kHz). It was found that the presence of the narrow groove in the bottom wall
of the cavity caused only very small changes δνN of the eigenfrequencies νN of
the cavity |δνN |/νN ≤ 10−4. It means that its influence on the structure of the
cavity’s wave functions was negligible. The influence of the thermal expansion of
the aluminium and Teflon insert on eigenfrequncies of cavities was eliminated by
stabilizing the temperature of the cavity with the accuracy of 0.05◦.

The experimental set-up consisting of a microwave cavity, a microwave syn-
thesizer HP 8672A, a lock-in amplifier SR530, a stepper motor for precise moving
of a line with the attached perturber, an antenna with a coupler and a crystal
detector, and a computer is shown in Fig. 2.

Fig. 2. The experimental set-up for measurements of wave functions (electric field dis-

tributions) in the microwave rough billiards by the means of the perturbation technique.
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For the RS and no-RS cavities the measurements were performed at 0.36 mm
steps along a half-circles with fixed radius Rc = 19.25 cm (1674 steps) and Rc =
17.5 cm (1531 steps), respectively. This step was small enough to reveal in details
the space structure of high-lying wave functions. For a given position of the
perturber the resonance frequencies were measured with the step of 50 kHz for
lower, narrower resonances, and of 100 kHz for the higher and wider ones. The
measurements were time consuming and depending on the level number N lasted
from 2 hours for the lower levels to 4 hours for the higher ones.

The perturbation technique of measurements allows for the extraction of
information about the wave function amplitude |ΨN (Rc, θ)| at any given point
of the cavity but it does not allow one to determine the sign of ΨN (Rc, θ) [23].
The knowledge of the sign of the wave function ΨN (Rc, θ) is necessary in the
procedure of the reconstruction of the wave function ΨN (r, θ) of the billiard. In
the papers [3, 11] the following effective sign-assignment procedure was presented
which bases on the identification of all close to zero minima of |ΨN (Rc, θ)|. In
this procedure the sign “minus” is arbitrarily assigned to the region between the
first and the second minimum. The sign “plus” is assigned to the region between
the second minimum and the third one and so on. As a result, the “trial wave
function” ΨN (Rc, θ) is constructed. If the assignment of the signs is correct the
wave function ΨN (r, θ) of the billiard should be reconstructed with the boundary
condition ΨN (rΓ , θΓ ) ' 0.

3. Reconstruction of wave functions

In the procedure of the reconstruction of wave functions of a rough RS half-
-circular microwave billiard one should take into account the fact that inside the
billiard exist two different regions. The wave function outside of the half-circular
Teflon insert (r ≥ Rd) may be expanded in terms of Hankel functions

Ψout
N (r, θ) =

L∑
s=1

asΩs(kNr) sin(sθ), (2)

where Ωs(x) = Re(H(2)
s (x) + Sss(kNRd)H(1)

s (x)) and kN = 2πνN/c. H
(1)
s (x) and

H
(2)
s (x) are Hankel functions of the first and the second kind, respectively. The

matrix Sss′(kNRd) is defined as follows [24]

Sss′(kNRd) = −H
(2)′
s (kNRd)− η[J ′s(ηkNRd)/Js(ηkNRd)]H(2)

s (kNRd)

H
(1)′
s (kNRd)− η[J ′s(ηkNRd)/Js(ηkNRd)]H(1)

s (kNRd)
δss′ . (3)

The derivatives of Hankel and Bessel functions are marked by primes. In Eq. (2)
the number of basis functions is limited to L = kNrRS

max +4, where rRS
max = 20.7 cm

is the maximum radius of the RS cavity. kNrRS
max is a semiclassical estimate for

the maximum possible angular momentum for a given kN . The functions with
angular momentum s > kNrRS

max describe evanescent waves. We checked that the
basis of L wave functions was large enough to properly reconstruct billiard’s wave
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functions. The coefficients as in Eq. (2) may be determined from the “trial wave
functions” ΨN (Rc, θ)

as =
[π

2
Ωs(kNRc)

]−1
∫ π

0

ΨN (Rc, θ) sin(sθ)dθ. (4)

Inside the Teflon insert (r ≤ Rd) the wave functions of the RS billiard may
be expanded in terms of circular waves

Ψ in
N (r, θ) =

L′∑
s=1

a′sJs(ηkNr) sin(sθ). (5)

The number of basis functions is limited to L′ = ηkNRd. The coefficients a′s
in Eq. (5) can be evaluated from the continuity condition fulfilled at the border of
the dielectric insert Ψout

N (Rd, θ) = Ψ in
N (Rd, θ) allowing in this way to reconstruct

the full wave function ΨN (r, θ) of the billiard.
The refraction index η = 1.425±0.002 of Teflon was found experimentally by

measuring the set of resonant frequencies of a microwave circular cavity of radius
RT = 3.25 cm entirely filled by it.

The procedure of determining of wave functions of a no-RS half-circular bil-
liard is much simpler. Inside the whole interior of the billiard the wave functions
may be expanded in terms of circular waves (here only odd states in expansion are
considered)

ΨN (r, θ) =
L′′∑
s=1

a′′sJs(kNr) sin(sθ), (6)

where the coefficients a′′s may be extracted from the “trial wave function”
ΨN (Rc, θ) via

a′′s =
[π

2
Js(kNRc)

]−1
∫ π

0

ΨN (Rc, θ) sin(sθ)dθ. (7)

In Eq. (6) the number of basis functions is limited to L′′ = kNrno−RS
max , where

rno−RS
max = 21.4 cm is the maximum radius of the no-RS cavity. Circular waves with

angular momentum s > L, which correspond to evanescent waves, are neglected.
Using the method of the “trial wave function” we were able to reconstruct

190 experimental wave functions of the rough no-RS half-circular billiard with the
level number N between 6 and 248 and 27 wave functions with N between 250 and
435 [3]. Wave functions with N ≤ 35 lie in the regime of Breit–Wigner ergodicity
while the ones with N > 35 belong to the regime of Shnirelman ergodicity. In the
case of the RS billiard we reconstructed 31 wave functions with N between 17 and
204 lying in the regime of Breit–Wigner ergodicity. As the quantitative measure
of the sign assignment quality we chose the integral γ

∫
Γ
|ΨN (r, θ)|2dl calculated

along the billiard’s rough boundary Γ , where γ is the length of Γ . The remaining
wave functions from the ranges N = 6− 435 and N = 17− 204 of the no-RS and
RS billiards, respectively, were not reconstructed because of an accidental near-
-degeneration of the neighboring states or due to problems with the measurements
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Fig. 3. (a) Squared wave function |Ψ185(Rc, θ)|2 (in arbitrary units) measured on a half-

-circle with radius Rc = 19.25 cm. (b) and (c) The “trial wave functions” Ψ185(Rc, θ) (in

arbitrary units) with incorrectly and correctly assigned signs, respectively, which were

used in the reconstruction of the wave functions Ψ185(r, θ) of the billiard (see Fig. 4).

Fig. 4. (a) and (b) The wave functions Ψ185(r, θ) of the chaotic microwave half-circular

RS rough billiard reconstructed from the incorrect and correct “trial wave functions”

shown in Fig. 3b and c, respectively. The amplitudes have been converted into a color

scale with orange corresponding to large positive and blue corresponding to large nega-

tive values, respectively. Dimensions of the billiard are given in cm.
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of |ΨN (Rc, θ)|2 along a half-circle coinciding for its significant part with one of the
nodal lines of ΨN (r, θ).

In Fig. 3a we show the squared wave function |ΨN (Rc, θ)|2, N = 185, of the
RS billiard measured on the half-circle of radius Rc = 19.25 cm. The examples
of the “trial wave functions” Ψ185(Rc, θ) of the RS billiard with not correctly as-
signed signs and correctly assigned signs are shown in Fig. 3b and c, respectively.
The “trial wave function” presented in Fig. 3b was used in the reconstruction
of the wave function Ψ185(r, θ) shown in Fig. 4a, which evidently does not fulfill
the boundary condition Ψ185(rΓ , θΓ ) ' 0. In Fig. 4b we show properly recon-
structed wave function Ψ185(r, θ) of the RS billiard, which was obtained from the
“trial wave function” presented in Fig. 3c. In this case the boundary condition
Ψ185(rΓ , θΓ ) ' 0 is much better fulfilled.

4. Structure of energy surface

The properties of the measured wave functions may be further investigated
by finding the structures of their energy surfaces [15]. The structure of the en-
ergy surface plays an important role in the identification whether a wave func-
tion exhibits a localized or ergodic behavior. To find the energy structure of
the wave function N of the RS billiard we extracted wave function amplitudes
C

(N)
nl = 〈n, l|N〉 in the basis n, l of a half-circular RS billiard (desymmetrized annu-

lar RS billiard) [25] with radius rRS
max and a half-circular Teflon insert of radius Rd,

where n = 1, 2, 3 . . . enumerates the zeros of the radial function of the billiard and
l = 1, 2, 3 . . . is the angular quantum number. The moduli of amplitudes |C(N)

nl |
and their projections into the energy surface for the experimental wave functions
N = 22 and N = 185 of the RS billiard are shown in Fig. 5. The wave function
N = 22, which lies close to the low border of the Breit–Wigner regime (Ne = 5),
is quite well localized around the center of localization n = 3, l = 5. It is worth
pointing out that the borders of localization and ergodicity in the rough billiards
are not sharp. Therefore, it is possible to observe localized wave functions even
for N slightly higher than Ne, i.e. in the Breit–Wigner regime. The wave function
N = 185, which lies nearby the border of the Shnirelman regime (NW = 208), is
extended over the whole energy surface [13]. The full lines on the projection planes
in Fig. 5a and b mark the energy surface of a half-circular annular ray-splitting
billiard H(n, l) ' EN = k2

N estimated from the formula |H(n, l)−EN |/EN ≤ 0.12.
The peaks |C(185)

nl | are spread almost perfectly along the line marking the energy
surface.

The structures of the energy surfaces of the wave functions N = 30 from
the Breit–Wigner regime (1 < N ≤ 35) and N = 413 from the Shnirelman regime
of the no-RS billiard are shown in Fig. 6a and b, respectively. As expected, the
energy structure of the wave function N = 30 is similar to the energy structure
of the wave function N = 185 of the RS billiard. In the case of the regime of the
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Fig. 5. Structure of the energy surface in the regime of Breit–Wigner ergodicity for

the RS billiard. Here we show the moduli of amplitudes |C(N)
nl | for the wave functions:

(a) N = 22, ν22 ' 3.25 GHz and (b) N = 185, ν185 ' 8.77 GHz. The low wave function

N = 22 is localized, while the higher wave function N = 185 is delocalized in the n, l

basis. Full lines show the semiclassical estimation of the energy surface (see the text).

Fig. 6. Structure of the energy surface in the regime of Breit–Wigner and Shnirelman

ergodicity for the no-RS billiard. We show the moduli of amplitudes |C(N)
nl | for the wave

functions: (a) N = 30, ν30 ' 4.09 GHz and (b) N = 413, ν413 ' 14.09 GHz. Both wave

functions are delocalized in the n, l basis. Full lines show the semiclassical estimation of

the energy surface (see the text).

Shnirelman ergodicity the wave function N = 413 is homogeneously distributed
over the whole energy surface.

5. Amplitude distribution

Ergodic behavior of the wave functions of the billiards can be additionally
tested by the evaluation of the amplitude distribution P (ΨN ) [26, 27]. For chaotic
states the probability of finding the value ΨN at any point inside the billiard should
be distributed as a Gaussian, P (ΨN ) ∼ exp(−βΨ2

N ). In Fig. 7a we show the am-
plitude distribution P (ΨNA1/2) of the wave function N = 22 while in Fig. 7b
the distribution P (ΨNA1/2) of the wave function N = 185 of the RS billiard is
presented. The width of the amplitude distributions P (ΨN ) was rescaled to unity
by multiplying normalized to unity wave functions by the factor A1/2, where A de-
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Fig. 7. The amplitude distribution P (Ψ in
N A1/2) of the wave functions N = 22 (a) and

N = 185 (b) from the regime of the Breit–Wigner ergodicity of the RS billiard. The

amplitude distributions were constructed as histograms with bin equal to 0.2. The width

of the distribution P (Ψ) was rescaled to unity by multiplying normalized to unity wave

function by the factor A1/2, where A denotes billiard’s area. Full line shows standard

normalized Gaussian prediction P0(ΨA1/2) = (1/
√

2π) exp(−Ψ2A/2).

notes billiard’s area (see formula (23) in [27]). The distributions were constructed
as normalized to unity histograms with the bin equal to 0.2. Because the wave
function N = 22 lies close to the localization border its amplitude distribution
P (ΨNA1/2) departures significantly from the Gaussian prediction (see Fig. 7a).
For the higher wave function N = 185 lying also in the regime of Breit–Wigner
ergodicity, but being close to the border of the Shnirelman ergodicity, the distribu-
tion of P (ΨNA1/2) is in good agreement with the standard normalized Gaussian
prediction P0(ΨA1/2) = (1/

√
2π) exp(−Ψ2A/2).

The amplitude distribution P (ΨN ) of the wave functions N = 30 and N =
413 of the no-RS billiard lying in the regimes of Breit–Wigner and Shnirelman
ergodicity, respectively, are shown in Fig. 8a and b. We checked that for all wave

Fig. 8. The amplitude distribution P (Ψ in
N A1/2) of the wave functions N = 30 and N =

413 of the no-RS billiard from the regimes of the Breit–Wigner (a) and the Shnirelman

ergodicity (b), respectively. The amplitude distributions were constructed as histograms

with bin equal to 0.2. The width of the distribution P (Ψ) was rescaled to unity by

multiplying normalized to unity wave function by the factor A1/2, where A denotes

billiard’s area. Full line shows standard normalized Gaussian prediction P0(ΨA1/2) =

(1/
√

2π) exp(−Ψ2A/2).
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functions of the no-RS billiard lying in the regime of Shnirelman ergodicity the
distribution of P (ΨNA1/2) is in good agreement with the standard normalized
Gaussian prediction, which is not always true for wave functions from the Breit–
Wigner regime (see Fig. 8a).

6. Number of nodal domains

The number of nodal domains ℵN vs. the level number N in the chaotic
microwave RS rough billiard is plotted in Fig. 9. All included wave functions
N = 17− 204 lie in the regime of Breit–Wigner ergodicity. The full line in Fig. 9
shows the least squares fit ℵN = a1N + b1

√
N of the experimental data, where

a1 = 0.055 ± 0.017, b1 = 1.006 ± 0.209. The coefficient a1 = 0.055 ± 0.017 is
smaller than the prediction of the percolation model of Bogomolny and Schmit [2],
ℵN/N ' 0.062, though it coincides with it within the error limits. The errors of
the coefficients a1 and b1 are relatively high because the number of nodal domains
fluctuates significantly in the function of the level number N , which was also
demonstrated in [1] (see Fig. 5).

Fig. 9. The number of nodal domains ℵN (full circles) versus a level number N for the

regime of Breit–Wigner ergodicity of the RS billiard. Full line shows the least squares

fit ℵN = a1N + b1

√
N to the experimental data (see the text), where a1 = 0.055 ±

0.017, b1 = 1.006 ± 0.209. The prediction of the theory of Bogomolny and Schmit [2],

a1 = 0.062.

The number of nodal domains ℵN vs. the level number N in the chaotic
microwave no-RS rough billiard is plotted in Fig. 10. Here we used wave functions
N = 6−435 of the no-RS billiard. The full line in Fig. 10 shows the least squares fit
ℵN = a2N+b2

√
N of the experimental data, where a2 = 0.058±0.006, b2 = 1.075±

0.088, calculated for higher levels 80 ≤ N ≤ 435. The coefficient a2 = 0.058±0.006
evaluated in the regime of Shnirelman ergodicity is closer to the prediction of the
percolation model than the one found for the regime of Breit–Wigner ergodicity.
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Fig. 10. The number of nodal domains ℵN (full circles) versus a level number N for the

regime of Shnirelman ergodicity of the no-RS billiard. Full line shows the least squares

fit ℵN = a1N + b1

√
N to the experimental data (see the text), where a1 = 0.058 ±

0.006, b1 = 1.075 ± 0.088. The prediction of the theory of Bogomolny and Schmit [2],

a1 = 0.062.

The second term in the least squares fits corresponds to a contribution of
boundary domains, i.e. domains, which include the billiard boundary. Numeri-
cal calculations of Blum et al. [1] performed for the Sinai and stadium billiards
showed that the number of boundary domains scales as the number of the bound-
ary intersections, that is as

√
N . Present results clearly suggest that in the rough

billiards in the regimes of Breit–Wigner and Shnirelman ergodicity the boundary
domains also significantly influence the scaling of the number of nodal domains
ℵN , leading to the departure from the predicted scaling ℵN ∼ N .

7. Signed area distribution

Reconstructed wave functions of the RS and no-RS billiards may be
also used for the calculations of the signed area distribution ΣA introduced
by Blum et al. [1]. The signed area distribution is defined as follows:
ΣA = 〈(A+ − A−)2〉/A2, where A± is the total area where the wave function
is positive (negative) and A is the billiard area. It is predicted [1] that for chaotic
wave functions the signed area distribution should converge in the asymptotic limit
to ΣA ' 0.0386N−1. It is worth noting that for integrable billiards ΣA displays
nonuniversal behavior. For example, for a rectangular billiard of size La × Lb,
Ψn,m(x, y) ∝ sin(nxπ/La) sin(myπ/Lb), ΣA = 0 if n or m are even. If n and
m are odd ΣA = 1/(nm)2. For a circular billiard for all doublet states (angular
momentum ` 6= 0) ΣA = 0.

Figure 11a shows the normalized signed area distribution NΣA for the mi-
crowave RS rough billiard. The points in Fig. 11a were obtained by averaging over
7 consecutive eigenstates. For low level numbers N < 208 lying in the regime of
Breit–Wigner ergodicity the normalized distribution NΣA is scattered around the
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predicted asymptotic limit. A slow convergence of NΣA at low level numbers N

was also observed for the Sinai and stadium billiards [1]. In the case of the Sinai
billiard this phenomenon was attributed to the presence of corners with sharp
angles, which are also present in the microwave rough RS billiard. According to
Blum et al. [1] the effect of corners on the wave functions is accentuated at low
energies.

Fig. 11. The normalized signed area distribution NΣA for the chaotic microwave half-

-circular rough billiards. The distribution NΣA for the RS billiard (a) and for the no-RS

billiard (b). Full line shows predicted by the theory asymptotic limit NΣA ' 0.0386,

Blum [1].

In Fig. 11b the normalized signed area distribution NΣA is shown for the
microwave no-RS rough billiard. For lower states 6 ≤ N ≤ 250 the points in
Fig. 11b were obtained by averaging over 20 consecutive eigenstates while for
higher states N > 250 the averaging over 5 consecutive eigenstates was applied.
For level numbers N < 220 the normalized distribution NΣA is above the predicted
asymptotic limit, however, for 220 < N ≤ 435 it more closely approaches the
asymptotic limit. This provides a strong evidence that the signed area distribution
ΣA can be used as a useful criterion of quantum chaos.

8. Conclusions

We measured the wave functions of the chaotic rough microwave billiards
with and without ray-splitting properties. The wave functions measured in the
RS billiard laid in the regime of Breit–Wigner ergodicity. The wave functions
measured in the no-RS billiard belonged mainly to the regime of Shnirelman er-
godicity. Following the results of percolation-like model proposed by [2] we con-
firmed that in the limit N → ∞ the least squares fit of the experimental data
obtained for the regime of Shnirelman ergodicity in the no-RS billiard yields the
asymptotic number of nodal domains ℵN/N ' 0.058 ± 0.006 that is close to the
theoretical prediction ℵN/N ' 0.062 [2]. In the case of the regime of Breit–Wigner
ergodicity in the RS billiard (17 ≤ N ≤ 204) we obtained in the asymptotic limit
ℵN/N ' 0.055± 0.017. This value is smaller than the one obtained for the no-RS
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billiard, though it coincides with the theoretical prediction within the error lim-
its. Finally, we demonstrate that the signed area distribution ΣA approaches for
high level number N of the no-RS billiard theoretically predicted asymptotic limit
0.0386N−1 [1]. The experimental results presented in this paper suggest that some
properties of nodal domains of wave functions of chaotic RS billiards, such as the
asymptotic number of nodal domains ℵN/N , are the same like in no-RS billiards.
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