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We consider the statistics of the impedance Z of a chaotic microwave

cavity coupled to a single port. We remove the non-universal effects of

the coupling from the experimental Z data using the radiation impedance

obtained directly from the experiments. We thus obtain the normalized

impedance whose probability density function is predicted to be universal in

that it depends only on the loss (quality factor) of the cavity. We find that

impedance fluctuations decrease with increasing loss. The results apply to

scattering measurements on any wave chaotic system.
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1. Introduction

Quantum chaotic scattering is a subject that first arose in the context of
nuclear scattering [1]. It is now finding increasing applications in condensed mat-
ter and atomic physics to understand the properties of larger scale complicated
quantum systems [2–4]. Quantum scattering is also of interest for understanding
the universal statistical properties of complicated electromagnetic enclosures [5].
Here we are concerned with systems that display ray chaos in the limit of high
quantum number, or wave energy. The quantities of interest in the corresponding
wave/quantum system are the impedance (Z) and scattering (S) matrices. The
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system has a finite number of ports or scattering channels, and the S-matrix re-
lates outgoing waves in terms of a linear combination of incoming waves on the
system. The Z matrix relates the total voltage at one port to a linear combination
of the currents entering all of the ports. They are related by a simple bi-linear
transformation S = (Z +Z0)−1(Z−Z0), where Z0 is the characteristic impedance
of the ports.

One successful approach to quantifying the statistical properties of quantum
scattering systems is the Poisson Kernel (PK) [6–8]. The PK is a global approach
to understanding the statistical properties of scattering systems. It describes the
statistical properties of the scattering matrix S in the presence of imperfect cou-
pling, in terms of the mean value of S. The mean value S characterizes the
imperfect coupling between the system and the exterior scattering channels, and
can be approximately evaluated from data by taking the mean of a large amount
of data on an ensemble of similar systems, or by energy averaging, or both. This
approach has proven to be quite useful for describing microwave scattering data,
for instance [9, 10].

We have introduced a complementary new approach to quantum scattering
that makes use of different conceptual pieces to achieve a similar outcome. Our ap-
proach is to directly characterize the non-ideal coupling between the outside world
and the system through a deterministic quantity known in electromagnetism as
the radiation impedance, ZRad. One can then define normalized impedance (z)
and scattering (s) matrices that directly reveal the universal fluctuating proper-
ties of the scattering system [11–13]. More explicitly, the radiation impedance
ZRad = RRad + iXRad of each channel is determined in a separate measurement
and combined with the cavity impedance Z = R + iX to create a normalized
impedance matrix z as z = R

RRad
+ iX−XRad

RRad
. This normalized impedance matrix

has statistical properties that are intrinsic to the scattering system and indepen-
dent of the coupling. A number of experiments have been performed to test the
universality of the normalized z [14, 15]. The normalized impedance approach has
also been employed by the Warszawa group to examine their data on quantum
graph microwave analogs [16].

2. Experiment
Our experimental setup consists of an air-filled quarter bow-tie chaotic cavity

(Fig. 1a) which acts as a two-dimensional resonator below about 19 GHz [17]. Ray
trajectories in a closed billiard of this shape are known to be chaotic. This cavity
has previously been used for the study of the eigenvalue spacing statistics [18] and
eigenfunction statistics [19, 20] for a wave chaotic system. In order to investigate a
scattering problem, we excite the cavity by means of a single coaxial probe whose
exposed inner conductor, with a diameter (2a) extends from the top plate and
makes electrical contact with the bottom plate of the cavity (Fig. 1b). In this
paper we study the properties of the cavity over a frequency range of 6–12 GHz,
where the spacing between two adjacent resonances is of the order of 25–30 MHz.
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Fig. 1. (a) The physical dimensions of the quarter bow-tie chaotic microwave resonator

are shown along with the position of the single coupling port. Two metallic perturbations

are systematically scanned and rotated throughout the entire volume of the cavity to

generate the cavity ensemble. (b) The details of the coupling port (antenna) and cavity

height h are shown in cross-section. (c) The implementation of the radiation case is

shown, in which commercial microwave absorber is used to line the inner walls of the

cavity to minimize reflections.

As in the numerical experiments in Refs. [12, 13], our experiment involves
a two-step procedure. The first step is to collect an ensemble of cavity scattering
coefficients S over the frequency range of interest. Ensemble averaging is realized
by using two rectangular metallic perturbations which are systematically scanned
and rotated throughout the volume of the cavity (Fig. 1a). Each configuration of
the perturbers within the cavity volume results in a different measured value of S.
The perturbers are kept far enough from the antenna so as not to alter its near-
-field characteristics. In total, one hundred different configurations are measured,
resulting in an ensemble of 800000 S values. We refer to this step as the “cavity
case”.

The second step, referred to as the “radiation case”, involves obtaining the
scattering coefficient for the excitation port when waves enter the cavity but do
not return to the port. In the experiment, this condition is realized by removing
the perturbers and lining the side walls of the cavity with commercial microwave
absorber (ARC Tech DD10017D) which provides about 25 dB of reflection loss
between 6 and 12 GHz (Fig. 1c). We measure the radiation scattering coefficient
SRad for the cavity, approximating the situation where the side walls are moved to
infinity. In this case SRad does not depend on the chaotic ray trajectories of the
cavity, and thus gives a deterministic (i.e. non-statistical) characterization of the
coupling independent of the chaotic system.

Having measured the cavity S and SRad, we then transform these quanti-
ties into the corresponding cavity and radiation impedances (Z and ZRad) and
determine the normalized impedance z as discussed above.
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In order to test the validity of the theory for systems with varying loss, we
create different “cavity cases” with different degrees of loss. Loss is controlled
and parameterized by placing 15.2 cm long strips of microwave absorber along the
inner walls of the cavity. These strips cover the side walls from the bottom to
top lids of the cavity. We thus generate different loss scenarios by increasing the
number of 15.2 cm long absorber strips placed along the inner cavity walls and
define the absorber perimeter ratio α as the ratio of absorber length to the total
cavity perimeter (147.3 cm).

3. Data

We first examine the degree to which ensemble averaging to estimate S

and Z, as employed in the Poisson kernel, can reproduce the radiation cases SRad

and ZRad. Figure 2 shows typical data for the magnitude of the cavity impedance

Fig. 2. The magnitude of the cavity impedance with no absorbing strips is shown as

a function of frequency. The dots indicate a single rendition of the cavity impedance

and perturbations. The dashed line is the magnitude of the complex cavity impedance

obtained after ensemble averaging over 100 different perturbation positions within the

cavity. The solid line is the magnitude of the measured radiation impedance for the same

antenna and coupling detail as shown in Fig. 1b. Note that even after 100 renditions of

the perturbers within the cavity, |〈Z〉100| is still a poor approximation to |ZRad|.

versus frequency for several cases. The dots show the cavity impedance for one par-
ticular rendition of the cavity and its perturbers in the case of no added absorber.
The dashed line shows the result of averaging the complex impedance of 100 rendi-
tions of the cavity. The thick solid line is the measured radiation impedance |Z|Rad,
which should be equivalent to the mean of the cavity impedance Z. It is clear that
even after averaging the properties of 100 cavities in the ensemble, the mean value
of measured Z has not yet approached the radiation case. This demonstrates the
importance of obtaining very high quality statistics before the Poisson kernel can
be used on real data. It also illustrates the relative ease with which the radiation
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impedance can be used to characterize the non-ideal coupling of real wave chaotic
systems.

We next examine the dependence of impedance statistics on the global con-
trol parameter k2/(∆k2

nQ). This parameter depends on the frequency, the volume
of the scattering system (through the resulting mode density ∆k2

n), and on the
losses (parameterized by the scatterer quality factor Q). It determines the prob-
ability density functions (pdf) for the real and imaginary parts of the normalized
impedance z, as well as the pdf of |s|. One can determine the value of k2/(∆k2

nQ)
from the variance of the Re[z] and Im[z] pdfs, as shown in [14], since the variance
σ2 = (1/π)/(k2/(∆k2

nQ)) for systems with time-reversal symmetry.
Figure 3 demonstrates how the cavity impedance evolves with increasing

loss. Shown are impedance magnitude data versus frequency for 3 cavities with
different numbers of microwave absorber strips inside (0, 1, or 4), but otherwise
identical. These data sets are for a single rendition of the cavity. Also shown
is the measured radiation impedance magnitude for the same antenna. As losses
increase, the fluctuations in |Z| clearly decrease, and approach the radiation case.
This qualitative observation is substantiated by quantitative tests of the Re[z] and
Im[z] pdf variances, and their dependence on system loss [14].

Fig. 3. The magnitude of a single rendition of the cavity impedance with (0 — dots,

1 — dashed line, 4 — solid triangles) absorbing strips is shown as a function of frequency.

The solid line is the magnitude of the measured radiation impedance for the same

antenna and coupling detail as shown in Fig. 1b. As losses within the cavity increase,

the cavity resonances are dampened out and the measured cavity impedance approaches

the radiation impedance.

Figure 4 further examines the dependence of the experimentally determined
value of k2/(∆k2

nQ) versus the number of absorber strips placed along the periph-
ery of the cavity walls. The k2/(∆k2

nQ) values were determined by the variances of
the Re[z] and Im[z] pdfs. Figure 4 shows a clear linear relationship of k2/(∆k2

nQ)
on the absorber perimeter ratio. This is expected because 1/Q is proportional
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Fig. 4. The relationship between the loss parameter k2/(∆k2
nQ) and the absorber

perimeter ratio (α) is shown between 7.2 and 8.4 GHz. The symbols represent (hol-

low star — 0, hollow circle — 1, hollow triangle — 2, hollow square — 3, solid star — 4)

absorbing strips within the cavity. The best linear fit to all the data points is shown as

the solid line. The x-intercept of this line indicates the α required to make a loss-less

cavity have the same k2/(∆k2
nQ) as the empty experimental cavity of Fig. 1a.

to the dissipated power in the cavity, which scales with the amount of microwave
absorber placed in the cavity. A linear fit of the data is quite accurate and shows a
zero-crossing for k2/(∆k2

nQ) at α = −0.035. This suggests that the empty cavity
losses correspond to covering the walls of a perfectly conducting cavity with 3.5%
coverage of microwave absorber.

4. Discussion and conclusions

Our work has illustrated the benefits of using the impedance, rather than
scattering matrix, to determine the universal scattering properties of wave chaotic
systems connected to the outside world. The measurement of radiation impedance
to characterize the non-ideal coupling to the system is a very simple and powerful
tool, and is more reliable than an average statistical quantity. The evolution of
wave chaotic scattering systems with internal losses has been illustrated in this
paper. The impedance approach also reveals other universal properties of the
cavity, such as the generalized variance ratio, related to the Hauser–Feshbach
relation [21].
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