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Wave scattering in chaotic systems with a uniform energy loss (absorp-

tion) is considered. Within the random matrix approach we calculate exactly

the energy correlation functions of different matrix elements of impedance

or scattering matrices for systems with preserved or broken time-reversal

symmetry. The obtained results are valid at any number of arbitrary open

scattering channels and arbitrary absorption. Elastic enhancement factors

(defined through the ratio of the corresponding variance in reflection to that

in transmission) are also discussed.
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1. Introduction

Propagation of electromagnetic or ultrasonic waves in billiards [1], scattering
of light in random media and transport of electrons through quantum dots [2, 3]
share at least one feature in common. In all these situations one deals with an open
wave-chaotic system studied by means of a scattering experiment, see Fig. 1 for
an illustration. Here, we have a typical transport problem where the fundamental
object of interest is the scattering matrix S, which relates linearly the amplitudes
of incoming and outgoing fluxes. However, under real laboratory conditions there
is a number of different sources which cause that a part of the flux gets irreversibly
lost or dissolved in the environment. As a result, we encounter absorption and
have to handle the S-matrix, which is no longer unitary. Statistics of different
scattering observables in the presence of absorption are nowadays under intense
experimental and theoretical studies. One should mention, in particular, exper-
iments on energy correlations of the S-matrix [4, 5] and total cross-sections [6],
distributions of reflection [4, 7] and transmission [8] as well as that of the com-
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Fig. 1. A sketch of a typical experimental setup with microwave billiards. A flat

chaotic cavity is fed with microwaves through an attached coaxial cable (i.e. a scattering

channel). On average, 1 − T part of the incoming flux, where T ≤ 1 is the so-called

transmission coefficient, is reflected back directly from the cable–cavity interface (port)

without exciting long-lived resonances in the cavity. If the cavity is thin enough then only

a transverse electric wave can propagate inside. The electric field has only a vertical

component, which is uniform in vertical direction and distributed nontrivially in the

plane. Therefore, there is a voltage between plates as well as a current due to the

in-plane magnetic field. The impedance is a quantity which relates linearly the port

voltage to the port current. Fluctuations of eigenmodes and eigenfrequencies result in

fluctuations of the impedance or S-matrix, as the driving frequency or port position is

changed.

plete S-matrix [9] in microwave cavities, properties of resonance widths [10] in such
systems at room temperatures, dissipation of ultrasonic energy in elastodynamic
billiards [11], fluctuations in microwave networks [12] (see also references in these
papers). Theoretically, statistics of reflection, delay times and related quantities
were considered first in the strong [13] or weak [14] absorption limits at perfect
coupling, and very recently at arbitrary absorption and coupling [15–19].

Another insight to the same problem comes by considering it not from the
“outside”, but rather from “inside”. Then the impedance relating linearly a voltage
to a current turns out to be the prime object of interest [20, 21], see Fig. 1. It
turns out that after proper taking into account of the wave nature of the current
[22, 23], the cavity impedance becomes an electromagnetic analogue of Wigner’s
reaction (R) matrix of the scattering theory. This can be understood qualitatively
through the well-known equivalence of the two-dimensional Maxwell equations
to the Schrödinger equation, the role of the wave function being played by the
field (the voltage in our case). Then the definition of the impedance becomes
formally similar to the definition of the R-matrix (which relates linearly the normal
derivative of the wave function to the wave function itself on the boundary). The
impedance is, therefore, related to the local Green function of the closed cavity
and fluctuates strongly due to chaotic internal dynamics.

The imaginary part of the local Green function (which is proportional to
the real part of the impedance) is known in the context of mesoscopics as the
local density of states and has a long story of study, see [24] for a recent review.
Actually, a closely related quantity in the context of spectra of complex atoms and
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molecules has the meaning of the total cross-section of indirect photoabsorption,
see e.g. [25]. As to the real part, it seems to have no direct physical meaning in
mesoscopics while it has the meaning of reactance in electromagnetics, where both
real and imaginary parts are experimentally studied. Very recently an approach
[26, 27] has been developed by us which allows one to study the (joint) distribution
function of these real and imaginary parts at arbitrary absorption and to relate it
to the reflection distribution, thus linking somewhat complementary experiments
[9] and [20] together.

Due to a strong resonance energy dependence the impedance and S-matrix
as well as any scattering observable exhibit strong fluctuations over a smooth regu-
lar background as the scattering energy (or another external parameter) is varied.
These two variations occurring on different energy scales are usually decomposed
into a mean and a fluctuating part by means of the spectral or (assumed to be
equivalent) ensemble average 〈· · ·〉. In this paper we consider statistics as deter-
mined by a two-point correlation function of the fluctuating parts (also called a
“connected” correlator): 〈AB〉conn = 〈AB〉 − 〈A〉〈B〉. We restrict ourselves below
to the cases of preserved and broken time-reversal symmetry (TRS).

2. Scattering, random matrix theory, and absorption

The resonance energy dependence of observables becomes explicit in the well-
-known Hamiltonian approach to quantum scattering, which was developed first in
the context of nuclear physics [28–30] and adopted later for the needs of mesoscopic
physics, see e.g. [3, 31, 32]. This framework is adequate to take finite absorption
into account as well. We have the following relation between the resonance part
of the scattering matrix and Wigner’s reaction matrix:

S(E) =
1− iK(E)
1 + iK(E)

, K(E) =
1
2
V †(E −H)−1V. (1)

The Hamiltonian H of the closed system gives rise to N levels (eigenfrequencies)
which are coupled to M continuum channels via the N ×M matrix V of coupling
amplitudes V c

n (n = 1 . . . N, c = 1 . . .M). Performing for S a Taylor series expan-
sion in K and regrouping the terms, one comes to another well-known expression
for the S-matrix

S(E) = 1− iV † 1
E −Heff

V, Heff = H − i
2
V V † (2)

in terms of the effective Hamiltonian Heff of the open system, which is non-
-Hermitian contrary to the Hermitian H. The factorized structure of the anti-
-Hermitian part ensures the unitarity of S(E) at real values of E. In a reso-
nance approximation of the energy-independent amplitudes the complex eigenval-
ues En = En− i

2Γn of Heff are the only singularities of the S-matrix in the complex
energy plane. As required by causality [33], they are located in the lower half plane
and correspond to the long-lived resonance states, with energies En and escape
widths Γn > 0, which are formed on the intermediate stage of a scattering process.
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To mimic chaotic nature of the intrinsic motion we adopt, as usual, the
random matrix theory (RMT) [2, 34, 35] and replace the actual Hamiltonian with
a random Hermitian matrix H. It turns out that spectral fluctuations possess a
large degree of universality in the limit N →∞: being expressed (“unfolding”) in
units of the mean level spacing ∆ they become independent of microscopic details
(i.e. a particular form of the distribution of H) and get uniformly distributed
throughout the whole spectrum [35]. That amounts usually to considering local

fluctuations at the center of the spectrum (E = 0) and to restricting ourselves
to the simplest case of Gaussian ensembles. One has the Gaussian orthogonal
ensemble (GOE, the Dyson symmetry index β = 1 and H symmetric) for chaotic
systems with preserved TRS and the Gaussian unitary ensemble (GUE, β = 2 and
H Hermitian) for those with fully broken TRS. For similar reasons the approach
is independent of particular statistical assumptions on coupling amplitudes V a

n

(as long as M ¿ N [36, 37]), which may be chosen as fixed [29] or random
[30] variables. They enter final expressions only by means of M transmission
coefficients (also so-called sticking probabilities):

Tc ≡ 1− |Scc|2 =
4κc

(1 + κc)2
, κc =

π||V c||2
2N∆

, (3)

where Scc stands for the average (or “optical”) S-matrix. They are assumed to be
input parameters of the theory. Tc ¿ 1 or Tc = 1 corresponds to an almost closed
or perfectly open channel “c”, respectively.

Absorption is usually seen as a dissipation process, which evolves exponen-
tially in time. Strictly speaking, different spectral components of the field have
different dissipation rates. However, this rather weak energy dependence can eas-
ily be neglected as long as local fluctuations on much finer energy scale ∼ ∆ are
considered. As a result, all the resonances acquire additionally to their escape
widths one and the same absorption width Γ > 0. The dimensionless parameter
γ ≡ 2πΓ/∆ characterizes then the absorption strength, with γ ¿ 1 or γ À 1
corresponding to the weak or strong absorption limit, respectively. (Microscop-
ically, it can be modelled by means of a huge number of weakly open parasitic
channels [5, 38] or by additional coupling to very complicated background with
almost continuous spectrum [15], see also [39].)

Treating Γ phenomenologically, one sees that such a uniform absorption
can equivalently be taken into account by a purely imaginary shift of the scatter-
ing energy E → E + i

2Γ ≡ Eγ , so that the S-matrix Sγ(E) ≡ S(Eγ) becomes
subunitary. The reflection matrix S†γSγ < 1 provides then a natural measure of
the mismatch between incoming and outgoing fluxes [14, 15]. At last but not least,
the matrix Z ≡ iK(Eγ) has the meaning of the normalized cavity impedance in
such a setting, see [22, 23] for further details.
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3. Correlation functions

3.1. Impedance

Let us consider first the simplest case of the impedance when the problem
can be fully reduced to that of spectral correlations determined by the two-point
cluster function Y2,β(ω) = δ(ω) − ∆2〈ρ(E1)ρ(E2)〉conn, where ω = (E2 − E1)/∆
and ρ(E) being the spectral density. It is easy to find 〈Zab〉 = κaδab for the mean
impedance at E = 0. To calculate the energy correlation function

Cabcd
Z (ω) ≡ 〈Zab∗(E1)Zcd(E2)〉conn (4)

it is instructive to write Zab(E) = i
2

∑
n

va∗
n vb

n

E−En+iΓ/2 in the eigenbasis of the closed
system. The rotation that diagonalizes the random H transforms the (fixed) cou-
pling amplitudes V a

n to Gaussian distributed random coupling amplitudes va
n with

the zero mean and the second moment 〈va∗
n vb

m〉 = (2κa∆/π)δabδnm. In such a
representation Eq. (4) acquires the following form:

Cabcd
Z (ω) =

∑
n,m

1
4
〈va

nvb∗
n vc∗

m vd
m〉

〈
1

E1 − En − i
2Γ

1
E2 − Em + i

2Γ

〉

conn

, (5)

so that averaging over coupling amplitudes (i.e. eigenfunctions) and that over the
spectrum can be done independently. The Gaussian statistics of v results in

1
4

( π

∆

)2

〈va
nvb∗

n vc∗
m vd

m〉 = κaκcδ
abδcd + κaκb(δacδbd + δ1βδadδbc)δnm, (6)

where δ1β term accounts for the presence of TRS, when all va
n are real and Z is

symmetric. It is useful then to represent the spectral correlator in the form of the
Fourier integral∫ ∞

0

dt1

∫ ∞

0

dt2e−Γ(t1+t2)/2eiE(t2−t1)ei(E2−E1)(t1+t2)/2〈ei(Ent1−Emt2)〉conn.

Due to the uniformity of local fluctuations in the bulk of the spectrum, one can
integrate additionally over the position E of the mean energy:∫

dE

N∆
eiE(t2−t1) =

1
N

δ

(
t2 − t1

tH

)
,

where tH ≡ 2π/∆ is the Heisenberg time. From the known RMT spectral fluctu-
ations one also has

(1−N)〈ei(En−Em)t〉conn = b2,β(t/tH)

for n 6= m, where b2,β(τ) is the spectral form factor defined through the Fourier
transform of Y2,β(ω) [34, 35]:

b2,β=1(τ) = [1− 2τ + τ log(1 + 2τ)]Θ(1− τ)

+
[
τ log

(
2τ + 1
2τ − 1

)
− 1

]
Θ(τ − 1), (7a)

b2,β=2(τ) = (1− τ)Θ(1− τ) (7b)
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at τ > 0 and b2,β(−τ) = b2,β(τ), so that Y2,β(ω) =
∫∞
−∞ dτe2πiωτ b2,β(τ). Combin-

ing all these results together and measuring the time in units of the Heisenberg
time (τ = t/tH), we arrive finally at

Cabcd
Z (ω) =

∫ ∞

0

dτe2πiωτCabcd
Z (τ), (8a)

Cabcd
Z (τ) = 4e−γτ

{
κaκc[1− b2,β(τ)]δabδcd + κaκb(δacδbd + δ1βδadδbc)

}
.(8b)

Similar in spirit calculations were done earlier in a context of reverberation in com-
plex structures in [40, 41] and in a context of chaotic photodissociation in [42, 43].

The form factor (8b) is simply related to that of K-matrix elements at zero
absorption as Cabcd

Z (τ) = e−γτCabcd
K (τ). Such a relationship between the cor-

responding form factors with and without absorption is generally valid for any
correlation function which may be reduced to the two-point correlator of resol-
vents (see [6] and below, e.g., for the case of the S-matrix). This can be easily
understood as the result of the analytic continuation 2πω → 2πω+iγ of the energy
difference ω when absorption is switched on (see the previous section).

The obtained expressions describe a decorrelation process of the Z matrix
elements as the energy difference grows, generally, CZ(ω → ∞) → 0. At ω = 0,
Eq. (8a) provides us with impedance variances Cabab

Z (0) = var(Zab) ≡ 〈|Zab|2〉 −
|〈Zab〉|2, which were recently studied in [44] (see also [45]). In analogy with the
so-called elastic enhancement factor considered frequently in nuclear physics [46],
one can define the following ratio of variances in reflection (a = b) to that in
transmission (a 6= b):

WZ,β ≡
√

var(Zaa)var(Zbb)
var(Zab)

= 2 + δ1β −
∫ ∞

0

dse−sb2,β

(
s

γ

)
, (9)

where the second equality follows easily from (8b) (let us note that the coupling
constants κa,b are mutually cancelled here). Making use of b2,β(∞) = 0 and
b2,β(0) = 1, one can readily find WZ,β in the limiting cases of weak or strong

Fig. 2. The impedance (a) and S-matrix (b) enhancement factors for chaotic systems

with preserved (β = 1) or broken (β = 2) time-reversal symmetry as functions of the

absorption strength γ. The case (b) corresponds to the many-channel limit with isolated

(
∑

c
Tc = 0.2, solid lines) or overlapping resonances (

∑
c
Tc = 5, dashed lines).
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absorption as

WZ,β =

{
2 + δ1β at γ ¿ 1,

1 + δ1β at γ À 1.
(10)

WZ,β decays monotonically as absorption grows, see Fig. 2a. In the case of unitary
symmetry, (7b) and (9) yield explicitly WZ,2 = 1 + 1

γ (1 − e−γ) in agreement
with [44]. It is hardly possible to get a simple explicit expression at finite γ

in the case of orthogonal symmetry. However, a reasonable approximation can
be found if one notices that the integration in (9) is determined mainly by the
region s ≤ 1, so that one can approximate b2,1(s) ≈ (1 − 2s + 2s2)Θ(1 − s)
through its Taylor expansion. Performing the integration, one arrives at WZ,1 ≈
3−γ−2[(4+γ2)(1− e−γ)−2γ(1+e−γ)], which turns out to be a good approxima-
tion to the exact answer at moderate absorption (deviations are seen numerically
only at γ ∼ 1).

3.2. S-matrix elements
The energy correlation function of the scattering matrix elements

Cabcd
S (ω) ≡ 〈Sab∗

γ (E1)Scd
γ (E2)〉conn =

∫ ∞

0

dτe2πiωτCabcd
S (τ) (11)

is a much more complicated object for an analytical treatment as (4). The rea-
son becomes clearer if one considers again the pole representation of the S-matrix
which follows from (2): Sab(E) = δab − i

∑
wa

nw̃b
n/(E − En). Due to a unitarity

constraint imposed on S (at real E), the residues and complex energies get mu-
tually correlated [30] with a generally unknown joint distribution. The separation
like (5) into a “coupling” and “spectral” average in no longer possible and can be
done only by involving some approximations [47]. The powerful supersymmetry
method [29, 48] turns out to be an appropriate technique to perform the statistical
average in this case. In their seminal paper [29] Verbaarschot et al. performed the
exact calculation of (11) at arbitrary transmission coefficients (and zero absorp-
tion) in the case of orthogonal symmetry. This finding was later adopted [6] to
include absorption. The corresponding exact result for unitary symmetry is still
lacking in the literature (see, however, [49] concerning the S-matrix variance in
the GOE–GUE crossover at perfect coupling) and will be presented below.

The calculation proceeds along the same line as in [29], we indicate only es-
sential differences. As usual, the representation of resolvents and thus (11) in the
form of Gaussian integrals over auxiliary “supervectors” consisting of both com-
muting and anticommuting (Grassmann) variables allows one to perform statistical
averaging exactly. In the limit N →∞, the rest integration over the auxiliary field
can be done in the saddle-point approximation. The final expression for both the
correlator and its form factor (11) can be equally represented as follows:

Cabcd
S = δabδcdTaTc

√
(1− Ta)(1− Tc)Jac + (δacδbd + δ1βδadδbc)TaTbPab. (12)

Here, the δ1β term accounts trivially for the symmetry property Sab = Sba in the
presence of TRS. Jac and Pab defined below are some functions (of the energy
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difference ω or the time τ), which depend also on TRS, coupling and absorption
but already in a nontrivial way. As a result, the elastic enhancement factor

WS,β ≡
√

var(Saa)var(Sbb)/var(Sab)

is generally a complicated function of all these parameters, in contrast to (9). In
the particular case of perfect coupling, all Tc = 1, one has obviously from (12)
that WS,β = 1 + δ1β at any absorption strength.

The saddle-point integration turns out to have a nontrivial saddle-point man-
ifold [48] over which one needs to integrate exactly. This task can be accomplished
by making use of the “angular” parametrization [29] of the manifold in terms of the
4
β × 4

β supermatrices t12 and t21. We consider first real ω (no absorption). Then
the functions Jac and Pab have in the energy domain the following representation:

Jac(ω) =
β2

16

〈
str

[
t12t21

1 + Tat12t21
k

]
str

[
t21t12

1 + Tct21t12
k

]
F (β)

M

〉

µ

, (13a)

Pab(ω) =
β

16

〈
str

[
t21

(1 + t12t21)1/2

1 + Tat12t21
kt12

(1 + t21t12)1/2

1 + Tbt21t12
k

]
F (β)

M

〉

µ

(13b)

that is completely in a parallel with [29] (the diagonal matrix k = 1 (−1) in the sub-
space of commuting (anticommuting) variables). This result has the form of an ex-
pectation value 〈(· · ·)〉µ ≡

∫
dµ(β)(· · ·)eiLβ(ω) in the field theory (nonlinear “zero-

-dimensional” supersymmetric σ-model) characterized by the Lagrangian Lβ(ω) =

βπωstr(t12t21). The so-called channel factor F (β)
M =

∏M
c=1 sdet(1 + Tct12t21)−β/2

accounts for system openness. We refer the reader to [29, 50] for a definition of
the supertrace and superdeterminant as well as for a general discussion of the
superalgebra. An explicit parametrization of matrices t12, t21 and the integration
measure dµ(β) over them depend on the symmetry case considered; it can be found
in [29] for β = 1 and in [51, 52] for β = 2. Essential is that the final expressions
are determined only by real “eigenvalues” µ0 and µ1,2 of the angular matrices.
Finally, one can cast resulting expressions as follows:

Jac(ω) =
〈(

µ1

1 + Taµ1
+

µ2

1 + Taµ2
+

µ0

1− Taµ0

)

×
(

µ1

1 + Tcµ1
+

µ2

1 + Tcµ2
+

µ0

1− Tcµ0

)
FM

〉

µ

, (14a)

Pab(ω) =
〈(

µ1(1 + µ1)
(1 + Taµ1)(1 + Tbµ1)

+
µ2(1 + µ2)

(1 + Taµ2)(1 + Tbµ2)

+
µ0(1− µ0)

(1− Taµ0)(1− Tbµ0)

)
FM

〉

µ

(14b)

with

FM =
∏
c

[
(1− Tcµ0)2

(1 + Tcµ1)(1 + Tcµ2)

]1/2
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in the β = 1 case of orthogonal symmetry [29], and

Jac(ω) =
〈(

µ1

1 + Taµ1
+

µ0

1− Taµ0

)(
µ1

1 + Tcµ1
+

µ0

1− Tcµ0

)
FM

〉

µ

, (15a)

Pab(ω) =
〈(

µ1(1 + µ1)
(1 + Taµ1)(1 + Tbµ1)

+
µ0(1− µ0)

(1− Taµ0)(1− Tbµ0)

)
FM

〉

µ

(15b)

with

FM =
∏
c

1− Tcµ0

1 + Tcµ1

in the β = 2 case of unitary symmetry. Here, the corresponding integration 〈(· · ·)〉µ
is to be understood explicitly for these two respective cases as

1
8

∫ ∞

0

dµ1

∫ ∞

0

dµ2

×
∫ 1

0

dµ0
(1− µ0)µ0|µ1 − µ2|eiπω(µ1+µ2+2µ0)

[(1 + µ1)µ1(1 + µ2)µ2]1/2(µ0 + µ1)2(µ0 + µ2)2
(. . .) (16)

and ∫ ∞

0

dµ1

∫ 1

0

dµ0(µ1 + µ0)−2ei2πω(µ1+µ0) (. . .) . (17)

In the important particular case of the single open channel (elastic scattering), the
general expression for the β = 2 case simplifies further to

〈S∗(E1)S(E2)〉conn = T 2

∫ ∞

0

dµ1

×
∫ 1

0

dµ0

µ1 + µ0

1 + (2− T )µ1

(1 + Tµ1)3
ei2πω(µ1+µ0). (18)

Finally, putting above ω → ω+iγ/2π accounts for the finite absorption strength γ.
To consider (12) in the time domain, i.e. the form factor Cabcd

S (τ), we notice
that the variable τ = 1

2 (µ1 + µ2 + 2µ0) for β = 1 or τ = µ1 + µ0 for β = 2
plays the role of the dimensionless time. The corresponding expressions for Pab(τ)
and Jac(τ) can be investigated using the methods developed in [46, 47, 53]. For
orthogonal symmetry it was done in [6], where the overall decaying factor e−γτ

due to absorption was also confirmed by comparison to the experimental result
for the form factor measured in microwave cavities. It is useful for the qualitative
description to note that Pab(τ) and 2Jac(τ) are quite similar to the “norm leakage”
decay function [54] and the form factor of the Wigner time delays [37], respectively
(they would coincide exactly at γ = 0, if we put Ta,b,c = 0 appearing explicitly
in denominators of (13a) and thereafter). Then one can follow analysis performed
in these papers, see also [53], to find qualitatively Pab(τ) ∼ e−γτ (1 + 2

β Taτ)−1

× (1 + 2
β Tbτ)−1

∏
c(1 + 2

β Tcτ)−β/2 and Jab(τ) ∼ [1 − b2,β(τ)]Pab(τ). One has
Pab(τ) ≈ e−γτ and Jab(τ) ≈ (2τ/β)e−γτ as exact asymptotic at small times [47],
they both being ∼ e−γττ−Mβ/2−2 at large times.
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Such a power law is characteristic of open systems [31, 53, 54]. Physically, it
results from width fluctuations, which diminish as the number M of open channels
grows [32, 54]. In the limiting case M → ∞ and Tc → 0, all the resonances
acquire just the same escape width (in units of t−1

H )
∑

c Tc, which is often called
the Weisskopf width [55], so that the total width is γT =

∑
c Tc + γ. Then further

simplifications occur: Pab(τ) = e−γT τ and Jab(τ) = [1−b2,β(τ)]e−γT τ , that results
finally in

Cabcd
S (ω) =

(δacδbd + δ1βδadδbc)TaTb

γT − 2πiω

+δabδcdTaTc

∫ ∞

0

dτ [1− b2,β(τ)]e−(γT−2πiω)τ . (19)

For the case of β = 1 this result (at zero absorption) was obtained earlier by
Verbaarschot [46]. In the limit considered, expression (19) is very similar to (8a),
(8b), so that the enhancement factor WS,β is given by the same (9) where γ is
to be substituted with γT , see Fig. 2b for an illustration. At γT À 1 (large
resonance overlapping or strong absorption, or both) the dominating term in (19)
is the first one, which is known as the Hauser–Feshbach relation [56], see [57–59]
for discussion. Then WS,β = 2/β = WZ,β that can be also understood as the
consequence of the Gaussian statistics of S (as well as of Z) in the limit of strong
absorption [59].

4. Conclusions
For open wave chaotic systems with preserved or broken TRS we have cal-

culated exactly the energy correlation function of impedance matrix elements at
arbitrary absorption and coupling. This function is found to be related to the
two-level cluster function, or to its form factor in the time domain. The overall
exponential decay due to uniform absorption is shown to be the generic feature
of any correlation function reduced to a two-point spectral (resolvent) correlator,
that follows simply from analytic properties of the latter in the complex energy
plane. The elastic enhancement factor defined through the ratio of variances in
reflection to that in transmission diminishes gradually from the value 1 + 2/β at
weak absorption to 2/β at strong absorption.

The similar exact calculation for S-matrix elements has been performed in
the case of broken TRS, thus completing the well-known result [29] of preserved
TRS. The corresponding enhancement factor never reaches the maximum value
1+2/β at any finite resonance overlapping. It attains the value 2/β in the limit of
strong absorption (independent of coupling) or at perfect coupling (independent
of absorption).
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The financial support by the SFB/TR 12 der DFG (D.V.S. and H.-J.S.) and
EPSRC grant EP/C515056/1 (Y.V.F.) is acknowledged.



Correlation Functions of Impedance and Scattering . . . 63

References
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